Discover the most talked about and latest scientific content & concepts.

Concept: Whale watching


Whale watching has become increasingly popular as an ecotourism activity around the globe and is beneficial for environmental education and local economies. Southern Resident killer whales (Orcinus orca) comprise an endangered population that is frequently observed by a large whale watching fleet in the inland waters of Washington state and British Columbia. One of the factors identified as a risk to recovery for the population is the effect of vessels and associated noise. An examination of the effects of vessels and associated noise on whale behavior utilized novel equipment to address limitations of previous studies. Digital acoustic recording tags (DTAGs) measured the noise levels the tagged whales received while laser positioning systems allowed collection of geo-referenced data for tagged whales and all vessels within 1000 m of the tagged whale. The objective of the current study was to compare vessel data and DTAG recordings to relate vessel traffic to the ambient noise received by tagged whales. Two analyses were conducted, one including all recording intervals, and one that excluded intervals when only the research vessel was present. For all data, significant predictors of noise levels were length (inverse relationship), number of propellers, and vessel speed, but only 15% of the variation in noise was explained by this model. When research-vessel-only intervals were excluded, vessel speed was the only significant predictor of noise levels, and explained 42% of the variation. Simple linear regressions (ignoring covariates) found that average vessel speed and number of propellers were the only significant correlates with noise levels. We conclude that vessel speed is the most important predictor of noise levels received by whales in this study. Thus, measures that reduce vessel speed in the vicinity of killer whales would reduce noise exposure in this population.

Concepts: Endangered species, Whale, Whale watching, Killer whale, Beached whale, Michael Bigg, Killer whales


Southern Hemisphere humpback whales (Megaptera novaeangliae) generally undertake annual migrations from polar summer feeding grounds to winter calving and nursery grounds in subtropical and tropical coastal waters. Evidence for such migrations arises from seasonality of historic whaling catches by latitude, Discovery and natural mark returns, and results of satellite tagging studies. Feeding is generally believed to be limited to the southern polar region, where Antarctic krill (Euphausia superba) has been identified as the primary prey item. Non-migrations and / or suspended migrations to the polar feeding grounds have previously been reported from a summer presence of whales in the Benguela System, where feeding on euphausiids (E. lucens), hyperiid amphipods (Themisto gaudichaudii), mantis shrimp (Pterygosquilla armata capensis) and clupeid fish has been described. Three recent research cruises (in October/November 2011, October/November 2014 and October/November 2015) identified large tightly-spaced groups (20 to 200 individuals) of feeding humpback whales aggregated over at least a one-month period across a 220 nautical mile region of the southern Benguela System. Feeding behaviour was identified by lunges, strong milling and repetitive and consecutive diving behaviours, associated bird and seal feeding, defecations and the pungent “fishy” smell of whale blows. Although no dedicated prey sampling could be carried out within the tightly spaced feeding aggregations, observations of E. lucens in the region of groups and the full stomach contents of mantis shrimp from both a co-occurring predatory fish species (Thyrsites atun) and one entangled humpback whale mortality suggest these may be the primary prey items of at least some of the feeding aggregations. Reasons for this recent novel behaviour pattern remain speculative, but may relate to increasing summer humpback whale abundance in the region. These novel, predictable, inter-annual, low latitude feeding events provide considerable potential for further investigation of Southern Hemisphere humpback feeding behaviours in these relatively accessible low-latitude waters.

Concepts: Antarctica, Whale, Humpback whale, Whale surfacing behaviour, Fin whale, Whale watching, Krill, Whaling


Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range. Two years of near-continuous recordings from the PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Ekström Iceshelf, 70°31’S, 8°13'W) are used to explore the acoustic presence of humpback whales in an Antarctic coastal area. Humpback whale calls were present during nine and eleven months of 2008 and 2009, respectively. In 2008, calls were present in January through April, June through August, November and December, whereas in 2009, calls were present throughout the year, except in September. Calls occurred in un-patterned sequences, representing non-song sound production. Typically, calls occurred in bouts, ranging from 2 to 42 consecutive days with February, March and April having the highest daily occurrence of calls in 2008. In 2009, February, March, April and May had the highest daily occurrence of calls. Whales were estimated to be within a 100 km radius off PALAOA. Calls were also present during austral winter when ice cover within this radius was >90%. These results demonstrate that coastal areas near the Antarctic continent are likely of greater importance to humpback whales than previously assumed, presumably providing food resources year-round and open water in winter where animals can breathe.

Concepts: Antarctica, Whale, Humpback whale, Whale surfacing behaviour, Southern Ocean, Whale watching


The seasonal occupancy and diel behaviour of sperm whales (Physeter macrocephalus) was investigated using data from long-term acoustic recorders deployed off east Antarctica. An automated method for investigating acoustic presence of sperm whales was developed, characterised, and applied to multi-year acoustic datasets at three locations. Instead of focusing on the acoustic properties of detected clicks, the method relied solely on the inter-click-interval (ICI) for determining presence within an hour-long recording. Parameters for our classifier were informed by knowledge of typical vocal behaviour of sperm whales. Sperm whales were detected predominantly from Dec-Feb, occasionally in Nov, Mar, Apr, and May, but never in the Austral winter or early spring months. Ice cover was found to have a statistically significant negative effect on sperm whale presence. In ice-free months sperm whales were detected more often during daylight hours and were seldom detected at night, and this effect was also statistically significant. Seasonal presence at the three east Antarctic recording sites were in accord with what has been inferred from 20th century whale catches off western Antarctica and from stomach contents of whales caught off South Africa.

Concepts: Statistical significance, Norway, Antarctica, Winter, Sperm whale, Whale, Whale watching, Ambergris


BACKGROUND: Telomeres, the protective cap of chromosomes, have emerged as powerful markers of biological age and life history in model and non-model species. The qPCR method for telomere length estimation is one of the most common methods for telomere length estimation, but has received recent critique for being too error-prone and yielding unreliable results. This critique coincides with an increasing awareness of the potentials and limitations of the qPCR technique in general and the proposal of a general set of guidelines (MIQE) for standardization of experimental, analytical, and reporting steps of qPCR. In order to evaluate the utility of the qPCR method for telomere length estimation in non-model species, we carried out four different qPCR assays directed at humpback whale telomeres, and subsequently performed a rigorous quality control to evaluate the performance of each assay. RESULTS: Performance differed substantially among assays and only one assay was found useful for telomere length estimation in humpback whales. The most notable factors causing these inter-assay differences were primer design and choice of using singleplex or multiplex assays. Inferred amplification efficiencies differed by up to 40 % depending on assay and quantification method, however this variation only affected telomere length estimates in the worst performing assays. CONCLUSION: Our results suggest that seemingly well performing qPCR assays may contain biases that will only be detected by extensive quality control. Moreover, we show that the qPCR method for telomere length estimation can be highly precise and accurate, and thus suitable for telomere measurement in non-model species, if effort is devoted to optimization at all experimental and analytical steps. We conclude by highlighting a set of quality controls which may serve for further standardization of the qPCR method for telomere length estimation, and discuss some of the factors that may cause variation in qPCR experiments.

Concepts: DNA, Quality control, DNA replication, Telomere, Whale, Humpback whale, Whale surfacing behaviour, Whale watching


Sperm whale (Physeter macrocephalus) populations were expected to rebuild following the end of commercial whaling. We document the decline of the population in the eastern Caribbean by tracing demographic changes of well-studied social units. We address hypotheses that, over a ten-year period of dedicated effort (2005-2015), unit size, numbers of calves and/or calving rates have each declined. Across 16 units, the number of adults decreased in 12 units, increased in two, and showed no change in two. The number of adults per unit decreased at -0.195 individuals/yr (95% CI: -0.080 to -0.310; P = 0.001). The number of calves also declined, but the decline was not significant. This negative trend of -4.5% per year in unit size started in about 2010, with numbers being fairly stable until then. There are several natural and anthropogenic threats, but no well-substantiated cause for the decline.

Concepts: Sperm whale, Whale, Humpback whale, Whale watching, Ambergris, Dominica


Noise from shipping activity in North Atlantic coastal waters has been steadily increasing and is an area of growing conservation concern, as it has the potential to disrupt the behaviour of marine organisms. This study examines the impacts of ship noise on bottom foraging humpback whales (Megaptera novaeangliae) in the western North Atlantic. Data were collected from 10 foraging whales using non-invasive archival tags that simultaneously recorded underwater movements and the acoustic environment at the whale. Using mixed models, we assess the effects of ship noise on seven parameters of their feeding behaviours. Independent variables included the presence or absence of ship noise and the received level of ship noise at the whale. We found significant effects on foraging, including slower descent rates and fewer side-roll feeding events per dive with increasing ship noise. During 5 of 18 ship passages, dives without side-rolls were observed. These findings indicate that humpback whales on Stellwagen Bank, an area with chronically elevated levels of shipping traffic, significantly change foraging activity when exposed to high levels of ship noise. This measureable reduction in within-dive foraging effort of individual whales could potentially lead to population-level impacts of shipping noise on baleen whale foraging success.

Concepts: Whale, Humpback whale, Whale surfacing behaviour, Whale watching


We investigated nursing behavior on the Hawaiian breeding grounds for first year humpback whale (Megaptera novaeangliae) calves. We observed and video-documented underwater events with nursing behavior from five different whale groups. The observed nursing events include behaviors where a calf positions itself at a 30-45° angle to the midline of the mother’s body, with its mouth touching her mammary slit (i.e., suckling position). On two occasions, milk in the water column was recorded in close proximity to a mother/calf pair, and on one occasion, milk was recorded 2.5 min after suckling observed. Nursing events, where the calf was located in the suckling position, were found to be short in duration with a mean of 30.6 s (range 15.0-55.0, standard deviation (SD) = 16.9). All observations of the calf in the suckling position (n = 5, 100%) were with the calf located on the right side of the mother, suggesting a potential for right side laterality preference in the context of nursing behavior. Our study provides insight into mother/calf behaviors from a unique underwater vantage. Results supplement previous accounts of humpback whale nursing in Hawaiian waters, validate mother/calf positioning, document milk in the water column, and introduce the potential for laterality in nursing behavior for humpback whale calves.

Concepts: Hawaii, Whale, Humpback whale, Whale surfacing behaviour, Whale watching


The sperm whale (Physeter macrocephalus) emits a typical short acoustic signal, defined as a “click”, almost continuously while diving. It is produced in different time patterns to acoustically explore the environment and communicate with conspecifics. Each emitted click has a multi-pulse structure, resulting from the production of the sound within the sperm whale’s head. A Stable Inter Pulse Interval (Stable IPI) can be identified among the pulses that compose a single click. Applying specific algorithms, the measurement of this interval provides useful information to assess the total length of the animal recorded. In January 2005, a cabled hydrophone array was deployed at a depth of 2,100 m in the Central Mediterranean Sea, 25 km offshore Catania (Ionian Sea). The acoustic antenna, named OνDE (Ocean noise Detection Experiment), was in operation until November 2006. OνDE provided real time acoustic data used to perform Passive Acoustic Monitoring (PAM) of cetacean sound emissions. In this work, an innovative approach was applied to automatically measure the Stable IPI of the clicks, performing a cepstrum analysis to the energy (square amplitude) of the signals. About 2,100 five-minute recordings were processed to study the size distribution of the sperm whales detected during the OνDE long term deep-sea acoustic monitoring. Stable IPIs were measured in the range between 2.1 ms and 6.4 ms. The equations of Gordon (1991) and of Growcott (2011) were used to convert the IPIs into measures of size. The results revealed that the sperm whales recorded were distributed in length from about 7.5 m to 14 m. The size category most represented was from 9 m to 12 m (adult females or juvenile males) and specimens longer than 14 m (old males) seemed to be absent.

Concepts: Mediterranean Sea, Sound, Ocean, Sperm whale, Cetacea, Whale, Whale watching, Ambergris


The western South Atlantic (WSA) humpback whale population inhabits the coast of Brazil during the breeding and calving season in winter and spring. This population was depleted to near extinction by whaling in the mid-twentieth century. Despite recent signs of recovery, increasing coastal and offshore development pose potential threats to these animals. Therefore, continuous monitoring is needed to assess population status and support conservation strategies. The aim of this work was to present ship-based line-transect estimates of abundance for humpback whales in their WSA breeding ground and to investigate potential changes in population size. Two cruises surveyed the coast of Brazil during August-September in 2008 and 2012. The area surveyed in 2008 corresponded to the currently recognized population breeding area; effort in 2012 was limited due to unfavorable weather conditions. WSA humpback whale population size in 2008 was estimated at 16,410 (CV = 0.228, 95% CI = 10,563-25,495) animals. In order to compare abundance between 2008 and 2012, estimates for the area between Salvador and Cabo Frio, which were consistently covered in the two years, were computed at 15,332 (CV = 0.243, 95% CI = 9,595-24,500) and 19,429 (CV = 0.101, 95% CI = 15,958-23,654) whales, respectively. The difference in the two estimates represents an increase of 26.7% in whale numbers in a 4-year period. The estimated abundance for 2008 is considered the most robust for the WSA humpback whale population because the ship survey conducted in that year minimized bias from various sources. Results presented here indicate that in 2008, the WSA humpback whale population was at least around 60% of its estimated pre-modern whaling abundance and that it may recover to its pre-exploitation size sooner than previously estimated.

Concepts: Whale, Humpback whale, Whale surfacing behaviour, Fin whale, Whale watching, Whaling