Discover the most talked about and latest scientific content & concepts.

Concept: Wetland


As exposure to coastal hazards increases there is growing interest in nature-based solutions for risk reduction. This study uses high-resolution flood and loss models to quantify the impacts of coastal wetlands in the northeastern USA on (i) regional flood damages by Hurricane Sandy and (ii) local annual flood losses in Barnegat Bay in Ocean County, New Jersey. Using an extensive database of property exposure, the regional study shows that wetlands avoided $625 Million in direct flood damages during Hurricane Sandy. The local study combines these models with a database of synthetic storms in Ocean County and estimates a 16% average reduction in annual flood losses by salt marshes with higher reductions at lower elevations. Together, the studies quantify the risk reduction ecosystem services of marsh wetlands. Measuring these benefits in collaboration with the risk modelling industry is crucial for assessing risk accurately and, where appropriate, aligning conservation and risk reduction goals.

Concepts: Marsh, Wetland, Tropical cyclone, New Jersey, Jersey Shore, Island Beach State Park, Ocean County, New Jersey, Toms River, New Jersey


Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems.

Concepts: Bacteria, Microbiology, Petroleum, Marsh, Wetland, Swamp, Carbon, Salt marsh


Potential for habitat restoration is increasingly used as an argument for reintroducing ecosystem engineers. Beaver have well known effects on hydromorphology through dam construction, but their scope to restore wetland biodiversity in areas degraded by agriculture is largely inferred. Our study presents the first formal monitoring of a planned beaver-assisted restoration, focussing on changes in vegetation over 12years within an agriculturally-degraded fen following beaver release, based on repeated sampling of fixed plots. Effects are compared to ungrazed exclosures which allowed the wider influence of waterlogging to be separated from disturbance through tree felling and herbivory. After 12years of beaver presence mean plant species richness had increased on average by 46% per plot, whilst the cumulative number of species recorded increased on average by 148%. Heterogeneity, measured by dissimilarity of plot composition, increased on average by 71%. Plants associated with high moisture and light conditions increased significantly in coverage, whereas species indicative of high nitrogen decreased. Areas exposed to both grazing and waterlogging generally showed the most pronounced change in composition, with effects of grazing seemingly additive, but secondary, to those of waterlogging. Our study illustrates that a well-known ecosystem engineer, the beaver, can with time transform agricultural land into a comparatively species-rich and heterogeneous wetland environment, thus meeting common restoration objectives. This offers a passive but innovative solution to the problems of wetland habitat loss that complements the value of beavers for water or sediment storage and flow attenuation. The role of larger herbivores has been significantly overlooked in our understanding of freshwater ecosystem function; the use of such species may yet emerge as the missing ingredient in successful restoration.

Concepts: Biodiversity, Agriculture, Plant, Wetland, Ecosystem, Beaver, Herbivore, Biome


Increased catchment erosion and nutrient loading are commonly recognized impacts of deforestation on global wetlands. In contrast, an increase in water availability in deforested catchments is well known in modern studies but is rarely considered when evaluating past human impacts. We used a Budyko water balance approach, a meta-analysis of global wetland response to deforestation, and paleoecological studies from Australasia to explore this issue. After complete deforestation, we demonstrated that water available to wetlands increases by up to 15% of annual precipitation. This can convert ephemeral swamps to permanent lakes or even create new wetlands. This effect is globally significant, with 9 to 12% of wetlands affected, including 20 to 40% of Ramsar wetlands, but is widely unrecognized because human impact studies rarely test for it.

Concepts: Water, Soil, Wetland, Hydrology, Water cycle, Drainage basin, Wetlands, Ramsar Convention


Tannery operations consist of converting raw animal skins into leather through a series of complex water- and chemically-intensive batch processes. Even when conventional primary treatment is supplemented with chemicals, the wastewater requires some form of biological treatment to enable the safe disposal to the natural environment. Thus, there is a need for the adoption of low cost, reliable, and easy-to-operate alternative secondary treatment processes. This paper reports the findings of two pilot-scale wetlands for the secondary treatment of primary effluents from a full tannery operation in terms of resilience (i.e., ability to produce consistent effluent quality in spite of variable influent loads) and reliability (i.e., ability to cope with sporadic shock loads) when treating this hazardous effluent. Areal mass removal rates of 77.1g COD/m(2)/d, 11g TSS/m(2)/d, and 53mg Cr/m(2)/d were achieved with a simple gravity-flow horizontal subsurface flow unit operating at hydraulic loading rates of as much as 10cm/d. Based on the findings, a full-scale wetland was sized to treat all the effluent from the tannery requiring 68% more land than would have been assumed based on literature values. Constructed wetlands can offer treatment plant resilience for minimum operational input and reliable effluent quality when biologically treating primary effluents from tannery operations.

Concepts: Biology, Water pollution, Wetland, Sewage treatment, Wastewater, Environmental engineering, Effluent, Constructed wetland


Widespread deforestation, agriculture, and construction of milldams by European settlers greatly influenced valley-bottom stream morphology and riparian vegetation in the northeastern USA. The former broad, tussock-sedge wetlands with small, anastomosing channels were converted into today’s incised, meandering streams with unstable banks that support mostly weedy, invasive vegetation. Vast accumulations of fine-grained “legacy” sediments that blanket the regional valley-bottom Piedmont landscape now are being reworked from stream banks, significantly impairing the ecological health of downstream water bodies, most notably the Chesapeake Bay. However, potential restoration is impaired by lack of direct knowledge of the pre-settlement riparian and upslope floral ecosystems. We studied the subfossil leaf flora of Denlingers Mill, an obsolete (breached) milldam site in southeastern Pennsylvania that exhibits a modern secondary forest growing atop thin soils, above bedrock outcrops immediately adjacent to a modified, incised stream channel. Presumably, an overhanging old-growth forest also existed on this substrate until the early 1700s and was responsible for depositing exceptionally preserved, minimally transported subfossil leaves into hydric soil strata, which immediately underlie post-European settlement legacy sediments. We interpret the eleven identified species of the subfossil assemblage to primarily represent a previously unknown, upland Red Oak-American Beech mixed hardwood forest. Some elements also appear to belong to a valley-margin Red Maple-Black Ash swamp forest, consistent with preliminary data from a nearby site. Thus, our results add significantly to a more complete understanding of the pre-European settlement landscape, especially of the hardwood tree flora. Compared with the modern forest, it is apparent that both lowland and upslope forests in the region have been modified significantly by historical activities. Our study underscores that generally overlooked subfossil leaves can provide important, local, temporally constrained paleoecological data, with much potential value in this case for stream and wetland restoration decisions in the mid-Atlantic region.

Concepts: Ecology, Wetland, River, Forest, Stream, Riparian zone, Stream bed, Northeastern United States


Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages), and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils), remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha) and wetlands restored in warm (temperate and tropical) climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal) hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread.

Concepts: Biodiversity, Ecology, Climate, Wetland, Ecosystem, Biome, Ecosystem services, Biodiversity Action Plan


Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce wetland habitat availability for many species.

Concepts: Precipitation, Climate, Weather, Wetland, Ecosystem, Hydrology, Climate change, Global climate model


Due to the nature of the phosphorus (P) removal mechanisms associated with constructed wetlands, the sustainability of P treatment is usually of high interest. As a result, a 4-year dataset from a typical multi-celled integrated constructed wetland (ICW) located at Glaslough in Co. Monaghan, Ireland was evaluated to determine the effects of long-term P loadings and hydrological inputs on P treatment. The ICW was intensively monitored year-round from February 2008 through March 2012 for total P and molybdate reactive phosphate (MRP). Domestic wastewater was loaded at 16.4 ± 0.96 g m(2) year(-1) for total P and 11.2 ± 0.74 g m(2) year(-1) for MRP. Average mass reductions over the monitoring period were 91.4 and 90.1 %, respectively. The area-based kinetic coefficients (K (20)) of 11.8 for total P and 15.6 m year(-1) for MRP indicated a high area-specific retention rate. The ICW appeared to have a sustained capacity for P adsorption and retention, but the treatment was influenced mainly by external hydrological inputs and fluctuations in wastewater loadings. Linear regression analyses showed a reduction in mass retention of both total P and MRP with increased effluent flow volumes. Monthly mass reductions exceeded 90 % when the effluent flow volumes were less than 200 m(3) day(-1). When monthly effluent flow volumes exceeded 200 m(3) day(-1), nonetheless, mass reductions became highly variable. Designs and management of ICW systems should adopt measures to limit external hydrological loadings in order to maintain sufficient P treatment.

Concepts: Regression analysis, Water pollution, Marsh, Wetland, Sewage treatment, Wastewater, Environmental engineering, Constructed wetland


The accumulation and distribution of lead and chromium was tested in a laboratory-scale constructed wetland (CW) inoculated with metal-tolerant bacteria. Two non-inoculated systems also were evaluated, one planted and the other unplanted. Mass balances indicated that 57% of chromium input was accumulated into inoculated CW after 151 days of operation. The distribution was similar in support media and vegetation, in which 78% was transferred to aerial part. Similarly Pb was accumulated 29% in the support media and 39% in vegetation, which was distributed 52% in rhizome and 48% in aerial part. Significantly lower amounts of heavy metals were accumulated in non-inoculated systems than in the inoculated wetlands (p<0.005). In addition, a markedly higher proportion of chromium in aerial vegetation and of lead in the suspended fraction of the effluent was exhibited, which raises a subsequent recovery of the metal by harvest and settling, respectively. Results indicate that CW inoculated with metal-tolerant bacteria might be a suitable option for treating wastewater with content of lead and chromium.

Concepts: Water pollution, Marsh, Wetland, Sewage treatment, Lead, Heavy metal music, Constructed wetland, Wetlands