Discover the most talked about and latest scientific content & concepts.

Concept: Web service


Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services ( interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.

Concepts: DNA, Bioinformatics, Computational phylogenetics, Internet, Sequence alignment, BLAST, Clustal, Web service


A simple static image of genomes and associated metadata is very limiting, as researchers expect rich, interactive tools similar to the web applications found in the post-Web 2.0 world. GenomeD3Plot is a light weight visualization library written in javascript using the D3 library. GenomeD3Plot provides a rich API to allow the rapid visualization of complex genomic data using a convenient standards based JSON configuration file. When integrated into existing web services GenomeD3Plot allows researchers to interact with data, dynamically alter the view, or even resize or reposition the visualization in their browser window. In addition GenomeD3Plot has built in functionality to export any resulting genome visualization in PNG or SVG format for easy inclusion in manuscripts or presentations.GenomeD3Plot is being utilized in the recently released Islandviewer 3 ( to visualize predicted genomic islands with other genome annotation data. However, its features enable it to be more widely applicable for dynamic visualization of genomic data in general.

Concepts: Gene, Human Genome Project, Genome, World Wide Web, Web 2.0, Internet, Web browser, Web service


The Proteomics Standards Initiative (PSI) of the Human Proteome Organization (HUPO) has now been developing and promoting open community standards and software tools in the field of proteomics for 15 years. Under the guidance of the chair, co-chairs, and other leadership positions, the PSI working groups are tasked with the development and maintenance of community standards via special workshops and ongoing work. Among the existing, ratified standards, the PSI working groups continue to update PSI-MI XML, MITAB, mzML, mzIdentML, mzQuantML, mzTab, and the MIAPE (Minimum Information About a Proteomics Experiment) guidelines with the advance of new technologies and techniques. Further, new standards are currently either in the final stages of completion (proBed and proBAM for proteogenomics results, as well as PEFF) or in early stages of design (a spectral library standard format, a universal spectrum identifier, the qcML quality control format, and the Protein Expression Interface (PROXI) web services Application Programming Interface). In this work we review the current status of all these aspects of the PSI, describe synergies with other efforts such as the ProteomeXchange Consortium, the Human Proteome Project, and the metabolomics community, and provide a look at future directions of the PSI.

Concepts: Time, Protein, Proteomics, Application programming interface, Interface, Web service, Human Proteome Organization, Proteomics Standards Initiative


Semantic Web technologies have been widely applied in the life sciences, for example by data providers such as OpenLifeData and through web services frameworks such as SADI. The recently reported OpenLifeData2SADI project offers access to the vast OpenLifeData data store through SADI services.

Concepts: Scientific method, Science, Semantic Web, Web 2.0, Internet, Web services, Web server, Web service


The Drug-Gene Interaction Database (DGIdb, is a web resource that consolidates disparate data sources describing drug-gene interactions and gene druggability. It provides an intuitive graphical user interface and a documented application programming interface (API) for querying these data. DGIdb was assembled through an extensive manual curation effort, reflecting the combined information of twenty-seven sources. For DGIdb 2.0, substantial updates have been made to increase content and improve its usefulness as a resource for mining clinically actionable drug targets. Specifically, nine new sources of drug-gene interactions have been added, including seven resources specifically focused on interactions linked to clinical trials. These additions have more than doubled the overall count of drug-gene interactions. The total number of druggable gene claims has also increased by 30%. Importantly, a majority of the unrestricted, publicly-accessible sources used in DGIdb are now automatically updated on a weekly basis, providing the most current information for these sources. Finally, a new web view and API have been developed to allow searching for interactions by drug identifiers to complement existing gene-based search functionality. With these updates, DGIdb represents a comprehensive and user friendly tool for mining the druggable genome for precision medicine hypothesis generation.

Concepts: Pharmacology, Unix, Application programming interface, Interface, Operating system, Graphical user interface, Web service


Large amounts of epigenomic data are generated under the umbrella of the International Human Epigenome Consortium, which aims to establish 1000 reference epigenomes within the next few years. These data have the potential to unravel the complexity of epigenomic regulation. However, their effective use is hindered by the lack of flexible and easy-to-use methods for data retrieval. Extracting region sets of interest is a cumbersome task that involves several manual steps: identifying the relevant experiments, downloading the corresponding data files and filtering the region sets of interest. Here we present the DeepBlue Epigenomic Data Server, which streamlines epigenomic data analysis as well as software development. DeepBlue provides a comprehensive programmatic interface for finding, selecting, filtering, summarizing and downloading region sets. It contains data from four major epigenome projects, namely ENCODE, ROADMAP, BLUEPRINT and DEEP. DeepBlue comes with a user manual, examples and a well-documented application programming interface (API). The latter is accessed via the XML-RPC protocol supported by many programming languages. To demonstrate usage of the API and to enable convenient data retrieval for non-programmers, we offer an optional web interface. DeepBlue can be openly accessed at

Concepts: Computer, Computer program, Programming language, Protocol, Application programming interface, Interface, Technical communication, Web service


Oasis is a web application that allows for the fast and flexible online analysis of small-RNA-seq (sRNA-seq) data. It was designed for the end user in the lab, providing an easy-to-use web frontend including video tutorials, demo data and best practice step-by-step guidelines on how to analyze sRNA-seq data. Oasis' exclusive selling points are a differential expression module that allows for the multivariate analysis of samples, a classification module for robust biomarker detection and an advanced programming interface that supports the batch submission of jobs. Both modules include the analysis of novel miRNAs, miRNA targets and functional analyses including GO and pathway enrichment. Oasis generates downloadable interactive web reports for easy visualization, exploration and analysis of data on a local system. Finally, Oasis' modular workflow enables for the rapid (re-) analysis of data.

Concepts: RNA, MicroRNA, Mathematical analysis, Module, Application programming interface, Interface, Philosophical analysis, Web service


This paper introduces the APPRIS WebServer ( and WebServices ( Both the web servers and the web services are based around the APPRIS Database, a database that presently houses annotations of splice isoforms for five different vertebrate genomes. The APPRIS WebServer and WebServices provide access to the computational methods implemented in the APPRIS Database, while the APPRIS WebServices also allows retrieval of the annotations. The APPRIS WebServer and WebServices annotate splice isoforms with protein structural and functional features, and with data from cross-species alignments. In addition they can use the annotations of structure, function and conservation to select a single reference isoform for each protein-coding gene (the principal protein isoform). APPRIS principal isoforms have been shown to agree overwhelmingly with the main protein isoform detected in proteomics experiments. The APPRIS WebServer allows for the annotation of splice isoforms for individual genes, and provides a range of visual representations and tools to allow researchers to identify the likely effect of splicing events. The APPRIS WebServices permit users to generate annotations automatically in high throughput mode and to interrogate the annotations in the APPRIS Database. The APPRIS WebServices have been implemented using REST architecture to be flexible, modular and automatic.

Concepts: Proteins, Gene, Molecular biology, Annotation, Alternative splicing, Protein isoform, Web server, Web service


Existing ways of accessing data from the Reactome database are limited. Either a researcher is restricted to particular queries defined by a web application programming interface (API), or they have to download the whole database. Reactome Pengine is a web service providing a logic programming based API to the human reactome. This gives researchers greater flexibility in data access than existing APIs, as users can send their own small programs (alongside queries) to Reactome Pengine.

Concepts: Human, Computer, Computer program, Internet, Application programming interface, Interface, Web service


Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at:

Concepts: Biology, Organism, Computer, Computer programming, Application programming interface, Interface, Operating system, Web service