SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Waxes

28

Objective: Solventless dry powder coating methods have many advantages compared to solvent-based methods: they are more economical, simpler, safer, more environmentally friendly and easier to scale up. The purpose of this study was to investigate a highly effective dry powder coating method using the mechanofusion system, a mechanochemical treatment equipped with high compressive and shearing force.Materials and methods: Acetaminophen (AAP) and carnauba wax (CW) were selected as core particles of the model drug and coating material, respectively. Mixtures of AAP and CW with and without talc were processed using the mechanofusion system.Results: Sustained AAP release was observed by selecting appropriate processing conditions for the rotation speed and the slit size. The dissolution rate of AAP processed with CW substantially decreased with an increase in talc content up to 40% of the amount of CW loaded. Increasing the coating amount by two-step addition of CW led to more effective coating and extended drug release. Scanning electron micrographs indicated that CW adhered and showed satisfactory coverage of the surface of AAP particles.Conclusion: Effective CW coating onto the AAP surface was successfully achieved by strictly controlling the processing conditions and the composition of core particles, coating material and glidant. Our mechanochemical dry powder coating method using the mechanofusion system is a simple and promising means of solventless pharmaceutical coating.

Concepts: Wax, Scanning electron microscope, Rotation, Micrograph, Beeswax, Shoe polish, Waxes, Carnauba wax

27

Silk fibroin (SF) has been widely used as a wound dressing material due to its suitable physical and biological characteristics. In this study, a non-adhesive wound dressing which applies to cover the wound surface as an absorbent pad that would absorb wound fluid while accelerate wound healing was developed. The modification of SF fabrics by wax coating was purposed to prepare the non-adhesive wound dressing that is required in order to minimize pain and risk of repeated injury. SF woven fabrics were coated with different types of waxes including shellac wax, beeswax, or carnauba wax. Physical and mechanical properties of the wax-coated SF fabrics were characterized. It was clearly observed that all waxes could be successfully coated on the SF fabrics, possibly due to the hydrophobic interactions between hydrophobic domains of SF and waxes. The wax coating improved tensile modulus and percentage of elongation of the SF fabrics due to the denser structure and the thicker fibers coated. The in vitro degradation study demonstrated that all wax-coated SF fabrics remained up to 90% of their original weights after 7 weeks of incubation in lysozyme solution under physiological conditions. The wax coating did not affect the degradation behavior of the SF fabrics. A peel test of the wax-coated SF fabrics was carried out in the partial- and full-thickness wounds of porcine skin in comparison to that of the commercial wound dressing. Any wax-coated SF fabrics were less adhesive than the control, as confirmed by less number of cells attached and less adhesive force. This might be that the wax-coated SF fabrics showed the hydrophobic property, allowing the loosely adherence to the hydrophilic wound surface. In addition, the in vivo biocompatibility test of the wax-coated SF fabrics was performed in Sprague-Dawley rats with subcutaneous model. The irritation scores indicated that the carnauba wax-coated SF fabric was not irritant while the shellac wax or beeswax-coated SF fabrics were slightly irritant, comparing with the commercial wound dressing. Therefore, SF fabrics coated with waxes, particularly carnauba wax, would be promising choices of non-adhesive wound dressing.

Concepts: Wound healing, Wound, Wax, Chronic wound, Beeswax, Shoe polish, Waxes, Carnauba wax

0

The applications of superhydrophobic coatings in daily life are receiving increasing attention. Here, we report a general approach for preparing superhydrophobic coatings with high repellency to daily consumed liquid foods based on food grade waxes. The coatings are prepared by spray-coating the homogeneous wax suspensions in ethanol followed by annealing at 40 °C. The wax suspensions are formed by the heating dissolution-cooling precipitation-ultrasonication process thanks to the unique solubility of the waxes in ethanol. Ultrasonication of the wax suspension is helpful to improve superhydrophobicity by reducing the size of the wax microplatelets. Annealing at 40 °C could enhance mechanical stability of the coatings. The coatings are superhydrophobic with a water contact angle of 158.2° and a sliding angle of 7.3°. The coatings are resistant to intense water jetting and immersion in corrosive aqueous solutions. In addition, the coatings show excellent anti-adhesive properties for various liquid foods including cola, honey, milk and yoghourt. Moreover, the coatings are applicable onto different substrates (e.g., glass slide, PET plate and polyethylene plate) and could be prepared using different waxes (e.g., paraffin wax, beeswax and microcrystalline wax). We believe that the wax superhydrophobic coatings could find applications in various fields such as anti-adhesion of liquid foods, fruit preservation and anti-bioadhesion, etc.

Concepts: Paraffin, Wax, Alkane, Solution, Beeswax, Waxes, Candle, Microcrystalline wax

0

A simple method for incorporating amine groups in hydrogenated castor oil (HCO) to produce wax for beeswax or carnauba wax substitution in packaging and coating was developed. From the conversion rate of the products, HCO was reacted with ethanolamine at 150°C for 5 h, and the molar ratio of HCO and ethanolamine was 1:4. The hardness of the final product was seven times higher than that of beeswax, the cohesiveness of the final product was 1.3 times higher than that of beeswax and approximately one half of that of carnauba wax, and the melting point of the final product is 98°C. The Fourier transform Infrared spectroscopy showed that the amide groups were incorporated to form the amide products. In coating application, the results showed that the force of the final product coating cardboard was higher than that of beeswax and paraffin wax and less than that of carnauba wax. After 24 h soaking, the compression forces were decreased. HCO fatty acid wax can be an alternative wax for carnauba wax and beeswax in coating applications.

Concepts: Spectroscopy, Wax, Fourier transform spectroscopy, Beeswax, Waxes

0

Microparticles made from naturally occurring materials or biodegradable plastics such as poly(3-hydroxy butyrate)-co-(3-hydroxy valerate), PHBV, are being evaluated as alternatives to microplastics in personal care product applications but limited data is available on their ultimate biodegradability (mineralization) in down the drain environmental compartments. An OECD 301B Ready Biodegradation Test was used to quantify ultimate biodegradability of microparticles made of PHBV foam, jojoba wax, beeswax, rice bran wax, stearyl stearate, blueberry seeds and walnut shells. PHBV polymer was ready biodegradable reaching 65.4 ± 4.1% evolved CO2 in 5 d and 90.5 ± 3.1% evolved CO2 in 80 d. PHBV foam microparticles (125-500 μm) were mineralized extensively with >66% CO2 evolution in 28 d and >82% CO2 evolution in 80 d. PHBV foam microparticles were mineralized at a similar rate and extent as microparticles made of jojoba wax, beeswax, rice bran wax, and stearyl stearate which reached 84.8  ± 4.8, 84.9  ± 2.2, 82.7  ± 4.7, and 86.4 ± 3.2% CO2 evolution respectively in 80 d. Blueberry seeds and walnut shells mineralized more slowly only reaching 39.3  ± 6.9 and 5.1 ± 2.8% CO2 evolution in 80 d respectively.

Concepts: Wax, Biodegradation, Bioplastic, Biodegradable plastic, Biodegradability prediction, Waxes

0

The purpose of this study was to develop a pharmaceutical formulation containing fatty acid extract rich in free omega-3 fatty acids such as eicosapentaenoic acid and docosahexaenoic acid for topical use. Although the health benefits of cod liver oil and other fish oils taken orally as a dietary supplement have been acknowledged and exploited, it is clear that their use can be extended further to cover their antibacterial properties. In vitro evaluation showed that 20% (v/v) fatty acid extract exhibits good activity against strains of the Gram-positive bacteria Staphylococcus aureus, Enterococcus faecalis, Streptoccoccus pyogenes and Streptoccoccus pneumonia. Therefore, free polyunsaturated fatty acids from cod liver oil or other fish oils can be used as safe and natural antibacterial agents. In this study, ointment compositions containing free fatty acids as active antibacterial agents were prepared by using various natural waxes and characterized. The effects of different waxes, such as carnauba wax, ozokerite wax, laurel wax, beeswax, rice bran wax, candelilla wax and microcrystalline wax, in the concentration range of 1% to 5% (w/w) on the ointment texture, consistency and stability were evaluated. The results showed significant variations in texture, sensory and rheological profiles. This was attributed to the wax’s nature and chain composition. Microcrystalline wax gave the best results but laurel wax, beeswax and rice bran wax exhibited excellent texturing, similar sensory profiles and well-balanced rheological properties.

Concepts: Nutrition, Fatty acid, Fatty acids, Essential fatty acid, Omega-3 fatty acid, Wax, Eicosapentaenoic acid, Waxes

0

The effect of three different coatings; resin wax (Britex Ti), carnauba wax (Xedasol M14), and chitosan (1 and 2 % w/v) on postharvest quality of pomegranate fruits were investigated. Fruits quality characteristics and bioactive compounds were evaluated during 40, 80 and 120 days storage at 4.5 °C and 3 additional days at 20 °C. The results showed that uncoated fruits showed higher respiration rate, weight loss, L* and b* values of arils, total soluble solids (TSS)/titratable acidity (TA), and pH than coated fruits during storage. Coating treatments could delay declining TSS and TA percent, a* value of arils, as well as bioactive compounds such as total phenolics, flavonoids and anthocyanins content and antioxidant activity. The coated fruits with commercial resin and carnauba waxes showed significantly lower respiration rate and weight loss than other treatments, however carnauba wax could maintain considerably higher fruits quality and bioactive compounds than other coating treatments. The results suggested that postharvest application of carnauba wax have a potential to extend storage life of pomegranate fruits by reducing respiration rate, water loss and maintaining fruit quality.

Concepts: Wax, Coating, Fruit, Pomegranate, Beeswax, Shoe polish, Waxes, Carnauba wax

0

The D-optimal mixture experimental design was employed to optimize the melting point of natural lipstick based on pitaya (Hylocereus polyrhizus) seed oil. The influence of the main lipstick components-pitaya seed oil (10%-25% w/w), virgin coconut oil (25%-45% w/w), beeswax (5%-25% w/w), candelilla wax (1%-5% w/w) and carnauba wax (1%-5% w/w)-were investigated with respect to the melting point properties of the lipstick formulation. The D-optimal mixture experimental design was applied to optimize the properties of lipstick by focusing on the melting point with respect to the above influencing components. The D-optimal mixture design analysis showed that the variation in the response (melting point) could be depicted as a quadratic function of the main components of the lipstick. The best combination of each significant factor determined by the D-optimal mixture design was established to be pitaya seed oil (25% w/w), virgin coconut oil (37% w/w), beeswax (17% w/w), candelilla wax (2% w/w) and carnauba wax (2% w/w). With respect to these factors, the 46.0 °C melting point property was observed experimentally, similar to the theoretical prediction of 46.5 °C. Carnauba wax is the most influential factor on this response (melting point) with its function being with respect to heat endurance. The quadratic polynomial model sufficiently fit the experimental data.

Concepts: Wax, Fruit, Coconut, Beeswax, Shoe polish, Waxes, Carnauba wax, Quadratic polynomial

0

This study proposes a novel method for improving surface hydrophobicity of glycerol plasticized high amylose (HAG) films. We used polyethylene glycol isocyanate (PEG-iso) crosslinker to link HAG and three natural waxes (beeswax, candelilla wax and carnauba wax) to produce HAG+wax+PEG-iso films. The spatial distributions of wax and PEG-iso across the thickness of these films were determined using Synchrotron-based Fourier transform infrared spectroscopy. The hydrophobicity and surface morphology of the films were determined using contact angle (CA) and scanning electron microscopic measurements, respectively. The distribution patterns of wax and the PEG-iso across the thickness of the film, and the nature of crystalline patterns formed on the surface of these films were found to be the key factors affecting surface hydrophobicity. The highest hydrophobicity (CA >90°) was created when the PEG-iso was primarily distributed in the interior of the films and a hierarchical circular pinnacle structure of solidified wax was formed on the surface.

Concepts: Spectroscopy, Wax, Fourier transform spectroscopy, Food additives, Beeswax, Shoe polish, Waxes, Carnauba wax

0

High amylose starch-glycerol (HAG) films were produced incorporating beeswax, candelilla wax and carnauba wax in the presence and absence of Tween-80 in order to determine the distribution of wax in the films during the film formation process. The distribution of these waxes within the film was studied using Synchrotron based Fourier Transform Infrared Spectroscopy (S-FTIR) which provided 2D mapping along the thickness of the film. The incorporation of 5% and 10% wax in HAG films produced randomly distributed wax or wax-rich domains, respectively, within these films. Consequently, the addition of these waxes to HAG increased the surface roughness and hydrophobicity of these films. The addition of Tween-80 caused variations in wax-rich bands within the films. The HAG+carnauba wax+Tween-80 films exhibited domed wax-rich domains displayed with high integrated CH2 absorption value at the interior of the films, rougher surface and higher contact angle values than the other films. The S-FTIR 2D images indicated that the distribution of wax in starch-wax films correlated with the roughness and hydrophobicity of the starch-wax films.

Concepts: Spectroscopy, Wax, Fourier transform spectroscopy, Beeswax, Shoe polish, Waxes, Carnauba wax, Candelilla wax