SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Water crisis

136

Soil water shortage is a major factor influencing the ecology and hydrology of vegetation in China’s semihumid Loess Plateau. However, few studies have experimentally assessed how expected changes in precipitation will affect sap flow in semihumid forest ecosystems. In this study, we measured the sap flow of black locust (Robinia pseudoacacia Linn.) under ambient and drought (induced by throughfall exclusion) conditions in 2015 and 2016, and investigated the relationship between stand transpiration and environmental factors in the semihumid China’s Loess Plateau. Throughfall exclusion significantly decreased sap flux density and stand transpiration by 39% and 28%, respectively, in 2016, which may have been due to the cumulative droughts effect from both 2015 and 2016. Throughfall exclusion caused a significant reduction in soil moisture, leaf area index (LAI), and stem diameter. Stand transpiration was positively correlated with LAI (P < 0.01), but precipitation and soil moisture did not correlate with stand transpiration at a daily timescale, suggesting that LAI can be used as a proxy for stand transpiration. Our results highlight that precipitation must be considered when planting black locust in semihumid regions. These findings provide basic information about the management of water resources and vegetation restoration in the semihumid China's Loess Plateau and possibly other water-limited regions around the world.

Concepts: Water, Precipitation, Soil, Hydrology, Erosion, Water crisis, Robinia pseudoacacia, Drought

86

We analyzed differences in pediatric elevated blood lead level incidence before and after Flint, Michigan, introduced a more corrosive water source into an aging water system without adequate corrosion control.

Concepts: Water resources, Drinking water, Water supply, Corrosion, Water crisis, Lead poisoning, Blood lead level, Deficit irrigation

59

Public awareness of water- and drought-related issues is an important yet relatively unexplored component of water use behavior. To examine this relationship, we first quantified news media coverage of drought in California from 2005 to 2015, a period with two distinct droughts; the later drought received unprecedentedly high media coverage, whereas the earlier drought did not, as the United States was experiencing an economic downturn coinciding with a historic presidential election. Comparing this coverage to Google search frequency confirmed that public attention followed news media trends. We then modeled single-family residential water consumption in 20 service areas in the San Francisco Bay Area during the same period using geospatially explicit data and including news media coverage as a covariate. Model outputs revealed the factors affecting water use for populations of varying demographics. Importantly, the models estimated that an increase of 100 drought-related articles in a bimonthly period was associated with an 11 to 18% reduction in water use. Then, we evaluated high-resolution water consumption data from smart meters, known as advanced metering infrastructure, in one of the previously modeled service areas to evaluate breakpoints in water use trends. Results demonstrated that whereas nonresidential commercial irrigation customers responded to changes in climate, single-family residential customers decreased water use at the fastest rate following heavy drought-related news media coverage. These results highlight the need for water resource planners and decision makers to further consider the importance of effective, internally and externally driven, public awareness and education in water demand behavior and management.

Concepts: United States, Hydrology, Irrigation, Water resources, Water crisis, Google, San Francisco Bay Area, San Francisco Bay

45

Water is vital for life, and plain water is a calorie-free option for hydration. Increasing consumption of drinking water is a strategy to reduce energy intake and lose or maintain weight; however, information on the characteristics of consumers who drink water is limited. Our objective was to describe the characteristics of people who have a low intake of drinking water and to determine associations between their behaviors and attitudes and their intake of water.

Concepts: Water, Drinking water, Desalination, Water crisis, Water supply network

34

Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize long-term records of wildland fire, climate, and river flow for 168 locations across the United States. We show that annual river flow changed in 32 locations, where more than 19% of the basin area was burned. Wildland fires enhanced annual river flow in the western regions with a warm temperate or humid continental climate. Wildland fires increased annual river flow most in the semi-arid Lower Colorado region, in spite of frequent droughts in this region. In contrast, prescribed burns in the subtropical Southeast did not significantly alter river flow. These extremely variable outcomes offer new insights into the potential role of wildfire and prescribed fire in regional water resource management, under a changing climate.

Concepts: United States, Precipitation, Climate, Freshwater, Water resources, Oceanic climate, Water crisis, Wildfire

33

Water scarcity is a rapidly growing concern around the globe, but little is known about how it has developed over time. This study provides a first assessment of continuous sub-national trajectories of blue water consumption, renewable freshwater availability, and water scarcity for the entire 20(th) century. Water scarcity is analysed using the fundamental concepts of shortage (impacts due to low availability per capita) and stress (impacts due to high consumption relative to availability) which indicate difficulties in satisfying the needs of a population and overuse of resources respectively. While water consumption increased fourfold within the study period, the population under water scarcity increased from 0.24 billion (14% of global population) in the 1900s to 3.8 billion (58%) in the 2000s. Nearly all sub-national trajectories show an increasing trend in water scarcity. The concept of scarcity trajectory archetypes and shapes is introduced to characterize the historical development of water scarcity and suggest measures for alleviating water scarcity and increasing sustainability. Linking the scarcity trajectories to other datasets may help further deepen understanding of how trajectories relate to historical and future drivers, and hence help tackle these evolving challenges.

Concepts: Force, 20th century, Food security, Trajectory, Scarcity, World population, Famine, Water crisis

33

The travelling population is increasing globally year on year. International tourist arrival figures reached 1087 million in 2013 and 1133 million in 2014; of which 53% and 54% respectively accounted for air transport. The water on board aircraft is sourced from surface or ground water; piped to a central filling point and distributed to each aircraft by water service vehicles at the home base or at the destination airport. The purpose of this study was to ascertain the microbial, chemical (pH; Total and Free chlorine) and physical (temperature) quality of water from two aircraft, long- and short-haul, as well as from the original water source and the water service vehicle. A total of 154 water samples were collected and analysed. Long-haul flights were found to be significantly poorer in terms of microbial quality than short haul flights (p = 0.015). Furthermore, correlation and regression analysis showed that the water service vehicle was a significant source of increased microbial load in aircraft. Microbial diversity was also demonstrated, with 37 bacterial species identified belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga; using phenotypic and 16S rDNA sequence-based analysis. We present a novel quantified study of aircraft-related potable water supplies.

Concepts: Bacteria, Water purification, Rocket, Desalination, Water crisis, Aircraft, Jet airliner, Flight length

30

There is increasing evidence from ecological studies that lithium levels in drinking water are inversely associated with suicide mortality. Previous studies of this association were criticized for using inadequate statistical methods and neglecting socioeconomic confounders. This study evaluated the association between lithium levels in the public water supply and county-based suicide rates in Texas. A state-wide sample of 3123 lithium measurements in the public water supply was examined relative to suicide rates in 226 Texas counties. Linear and Poisson regression models were adjusted for socioeconomic factors in estimating the association. Lithium levels in the public water supply were negatively associated with suicide rates in most statistical analyses. The findings provide confirmatory evidence that higher lithium levels in the public drinking water are associated with lower suicide rates. This association needs clarification through examination of possible neurobiological effects of low natural lithium doses.

Concepts: Regression analysis, Epidemiology, Statistics, Sociology, Lithium, Poisson regression, Desalination, Water crisis

27

Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Research groups have estimated historic exposure using databases and models of arsenic in drinking water supplies, along with participant residential histories. Urinary arsenic species are an established biomarker of recent exposure; we compare arsenic concentrations in historically collected urine samples with predicted estimates of arsenic exposure. Using a cohort of 462 subjects with at least one urine sample collected from 1984-1992 and an arsenic exposure estimate through drinking water at the time of the urine sample, individual exposure estimates were compared with speciated urine arsenic (UAs) concentrations using correlation and multiple regression analyses. Urine inorganic arsenic (UIAs) concentrations (trivalent arsenic, pentavalent arsenic, monomethylarsonic acid, dimethylarsonic acid) were best predicted by residential water arsenic concentrations (R(2)=0.3688), compared with metrics including water consumption (R(2)=0.2038) or water concentrations at employment locations (R(2)=0.2331). UIAs concentrations showed similar correlation when stratified by whether the arsenic concentration was predicted or measured. Residential water arsenic concentrations, independent of water intake or water concentrations at places of employment, best explain the variability in UIAs concentrations, suggesting historical reconstruction of arsenic exposure that accounts for space-time variability and water concentrations may serve as a proxy for exposure.Journal of Exposure Science and Environmental Epidemiology advance online publication, 27 February 2013; doi:10.1038/jes.2013.8.

Concepts: Regression analysis, Urine, Water, History, Drinking water, Desalination, Water crisis, Water supply network

26

Pomegranate (PG) is a drought resistant crop, thriving well with scarce water resources. The non-climateric character of PG remarks the importance of determining the optimum harvest time to improve quality and phytochemical properties of PG.

Concepts: Agriculture, Hydrology, Harvest, Irrigation, Water crisis, Deficit irrigation