SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Visible spectrum

181

Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (β3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.

Concepts: Biology, Light, Photoreceptor cell, Blue, Red, Circadian rhythm, Spectrum, Visible spectrum

174

Billions of birds are estimated to be killed in window collisions every year, worldwide. A popular solution to this problem may lie in marking the glass with ultraviolet reflective or absorbing patterns, which the birds, but not humans, would see. Elegant as this remedy may seem at first glance, few of its proponents have taken into consideration how stark the contrasts between ultraviolet and human visible light reflections or transmissions must be to be visible to a bird under natural conditions. Complicating matters is that diurnal birds differ strongly in how their photoreceptors absorb ultraviolet and to a lesser degree blue light. We have used a physiological model of avian colour vision to estimate the chromatic contrasts of ultraviolet markings against a natural scene reflected and transmitted by ordinary window glass. Ultraviolets markings may be clearly visible under a range of lighting conditions, but only to birds with a UVS type of ultraviolet vision, such as many passerines. To bird species with the common VS type of vision, ultraviolet markings should only be visible if they produce almost perfect ultraviolet contrasts and are viewed against a scene with low chromatic variation but high ultraviolet content.

Concepts: Human, Mathematics, Light, Bird, Color, Estimation, Visible spectrum, Color vision

172

A basic premise of the recently proffered color-in-context model is that the influence of color on psychological functioning varies as a function of the psychological context in which color is perceived. Some research has examined the appetitive and aversive implications of viewing the color red in romance- and achievement-relevant contexts, respectively, but in all existing empirical work approach and avoidance behavior has been studied in separate tasks and separate experiments. Research is needed to directly test whether red influences the same behavior differently depending entirely on psychological context.

Concepts: Psychology, Science, Color, Green, Red, Primary color, RGB color model, Visible spectrum

171

Cu2O p-type semiconductor hollow porous microspheres have been prepared by using a simple soft-template method at room temperature. The morphology of as-synthesized samples is hollow spherical structures with the diameter ranging from 200 to 500 nm, and the surfaces of the spheres are rough, porous and with lots of channels and folds. The photocatalytic activity of degradation of methyl orange (MO) under visible light irradiation was investigated by UV-visible spectroscopy. The results show that the hollow porous Cu2O particles were uniform in diameters and have an excellent ability in visible light-induced degradation of MO. Meanwhile, the growth mechanism of the prepared Cu2O was also analyzed. We find that sodium dodecyl sulfate acted the role of soft templates in the synthesis process. The hollow porous structure was not only sensitive to the soft template but also to the amount of reagents.

Concepts: Spectroscopy, Light, Electromagnetic radiation, Semiconductor, Visible spectrum, Semiconductors, P-type semiconductor, N-type semiconductor

169

Wide wavelength ranges of light localization and scattering characteristics can be attributed to shape-dependent longitude surface plasmon resonance in complicated nanostructures. We have studied this phenomenon by spectroscopic measurement and a three-dimensional numerical simulation, for the first time, on the high-density branched silver nanowires and nanomeshworks at room temperature. These nanostructures were fabricated with simple light-induced colloidal method. In the range from the visible to the near-infrared wavelengths, light has been found effectively trapped in those trapping sites which were randomly distributed at the corners, the branches, and the junctions of the nanostructures in those nanostructures in three dimensions. The broadened bandwidth electromagnetic field enhancement property makes these branched nanostructures useful in optical processing and photovoltaic applications.

Concepts: Spectroscopy, Electromagnetism, Quantum mechanics, Fundamental physics concepts, Light, Electromagnetic radiation, Extraordinary optical transmission, Visible spectrum

168

With particular focus on bulk heterojunction solar cells incorporating ZnO nanorods, we study how different annealing environments (air or Zn environment) and temperatures impact on the photoluminescence response. Our work gives new insight into the complex defect landscape in ZnO, and it also shows how the different defect types can be manipulated. We have determined the emission wavelengths for the two main defects which make up the visible band, the oxygen vacancy emission wavelength at approximately 530 nm and the zinc vacancy emission wavelength at approximately 630 nm. The precise nature of the defect landscape in the bulk of the nanorods is found to be unimportant to photovoltaic cell performance although the surface structure is more critical. Annealing of the nanorods is optimum at 300[degree sign]C as this is a sufficiently high temperature to decompose Zn(OH)2 formed at the surface of the nanorods during electrodeposition and sufficiently low to prevent ITO degradation.

Concepts: Light, Zinc, Solar cell, Photovoltaics, Indium tin oxide, Visible spectrum, Photovoltaic module, Band gap

163

Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye.

Concepts: Eye, Demonstration, Image sensor, Imaging, Visible spectrum, Human eye, Eye color, Multi-spectral image

162

Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts.

Concepts: Light, Structure, Hierarchy, Chemical synthesis, Photocatalysis, Photocatalytic water splitting, Visible spectrum, Microstructure

159

The Atacama Desert has been pointed out as one of the places on earth where the highest surface irradiance may occur. This area is characterized by its high altitude, prevalent cloudless conditions and relatively low columns of ozone and water vapor. Aimed at the characterization of the solar spectrum in the Atacama Desert, we carried out in February-March 2015 ground-based measurements of the spectral irradiance (from the ultraviolet to the near infrared) at seven locations that ranged from the city of Antofagasta (on the southern pacific coastline) to the Chajnantor Plateau (5,100 m altitude). Our spectral measurements allowed us to retrieve the total ozone column, the precipitable water, and the aerosol properties at each location. We found that changes in these parameters, as well as the shorter optical path length at high-altitude locations, lead to significant increases in the surface irradiance with the altitude. Our measurements show that, in the range 0-5100 m altitude, surface irradiance increases with the altitude by about 27% in the infrared range, 6% in the visible range, and 20% in the ultraviolet range. Spectral measurements carried out at the Izaña Observatory (Tenerife, Spain), in Hannover (Germany) and in Santiago (Chile), were used for further comparisons.

Concepts: Ultraviolet, Earth, Sun, Infrared, Visible spectrum, Chile, Atacama Desert, Desert

71

Metamaterial-based optical cloaks have thus far used volumetric distribution of the material properties to gradually bend light and thereby obscure the cloaked region. Hence, they are bulky and hard to scale up and, more critically, typical carpet cloaks introduce unnecessary phase shifts in the reflected light, making the cloaks detectable. Here, we demonstrate experimentally an ultrathin invisibility skin cloak wrapped over an object. This skin cloak conceals a three-dimensional arbitrarily shaped object by complete restoration of the phase of the reflected light at 730-nanometer wavelength. The skin cloak comprises a metasurface with distributed phase shifts rerouting light and rendering the object invisible. In contrast to bulky cloaks with volumetric index variation, our device is only 80 nanometer (about one-ninth of the wavelength) thick and potentially scalable for hiding macroscopic objects.

Concepts: Fundamental physics concepts, Light, Refraction, Electromagnetic radiation, Visible spectrum, Invisibility, Concealment, Cloak