SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Vestibular system

145

Vestibular dysfunction causes postural instability, which is prevalent in the elderly. We previously showed that an imperceptible level of noisy galvanic vestibular stimulation (nGVS) can improve postural stability in patients with bilateral vestibulopathy during the stimulus, presumably by enhancing vestibular information processing. In this study, we investigated the after-effects of an imperceptible long-duration nGVS on body balance in elderly adults. Thirty elderly participants underwent two nGVS sessions in a randomised order. In Session 1, participants received nGVS for 30 min twice with a 4-h interval. In Session 2, participants received nGVS for 3 h. Two-legged stance tasks were performed with eyes closed while participants stood on a foam rubber surface, with and without nGVS, and parameters related to postural stability were measured using posturography. In both sessions, the postural stability was markedly improved for more than 2 h after the cessation of the stimulus and tended to decrease thereafter. The second stimulation in Session 1 caused a moderate additional improvement in body balance and promoted the sustainability of the improvement. These results suggest that nGVS can lead to a postural stability improvement in elderly adults that lasts for several hours after the cessation of the stimulus, probably via vestibular neuroplasticity.

Concepts: Better, Improve, Death, Vestibular system, Stability, Galvanic Vestibular Stimulation

37

Because there are currently no biological treatments for hearing loss, we sought to advance gene therapy approaches to treat genetic deafness. We focused on Usher syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and studied a knock-in mouse model, Ush1c c.216G>A, for Usher syndrome type IC (USH1C). As restoration of complex auditory and balance function is likely to require gene delivery systems that target auditory and vestibular sensory cells with high efficiency, we delivered wild-type Ush1c into the inner ear of Ush1c c.216G>A mice using a synthetic adeno-associated viral vector, Anc80L65, shown to transduce 80-90% of sensory hair cells. We demonstrate recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.

Concepts: DNA, Gene, Genetics, Biology, Auditory system, Cochlea, Vestibular system, Inner ear

30

The semicircular canals (SCs), part of the vestibular apparatus of the inner ear, are directly involved in the detection of angular motion of the head for maintaining balance, and exhibit adaptive patterns for locomotor behaviour. Consequently, they are generally believed to show low levels of intraspecific morphological variation, but few studies have investigated this assumption. On the basis of high-resolution computed tomography, we present here, to our knowledge, the first comprehensive study of the pattern of variation of the inner ear with a focus on Xenarthra. Our study demonstrates that extant three-toed sloths show a high level of morphological variation of the bony labyrinth of the inner ear. Especially, the variation in shape, relative size and angles of their SCs greatly differ from those of other, faster-moving taxa within Xenarthra and Placentalia in general. The unique pattern of variation in three-toed sloths suggests that a release of selection and/or constraints on their organ of balance is associated with the observed wide range of phenotypes. This release is coincident with their slow and infrequent locomotion and may be related, among other possible factors, to a reduced functional demand for a precise sensitivity to movement.

Concepts: Vestibular system, Mammal, Ear, Inner ear, Three-toed sloth, Sloth, Xenarthra, Labyrinthitis

28

Successful interaction with the external environment requires a balance between novel or exploratory and routine or exploitative behaviours. This distinction is often expressed in terms of location or orientation of the body relative to surrounding space: functions in which the vestibular system plays an important role. However, the distinction can also be applied to novel versus repetitive production of any behaviour or symbol. Here, we investigated whether vestibular inputs contribute to the balance between novel and routine behaviours, independently of their effects on spatial orienting, by assessing effects of galvanic vestibular stimulation (GVS) on a random number generation task. Right-anodal/left-cathodal GVS, which preferentially activates the left cerebral hemisphere decreased the randomness of the sequence, while left-anodal/right-cathodal GVS, which preferentially activates the right hemisphere increased it. GVS did not induce any spatial biases in locations chosen from the number line. Our results suggest that vestibular stimulation of each hemisphere has a specific effect on the balance between novel and routine actions. We found no evidence for effects of non-specific arousal due to GVS on random number generation, and no evidence for effects on number generation consistent with modulation of spatial attention due to GVS.

Concepts: Cerebral cortex, Vestibular system, Randomness, Randomization, Cerebral hemisphere, Hardware random number generator, Galvanic Vestibular Stimulation, Statistical randomness

28

Objective: To investigate the insertion speed and its impact on electrode insertion characteristics, hearing preservation and clinical vestibular function in a prospective cohort study with a retrospective control group at a tertiary otology/neurotology centre. Interventions: Hearing-preserving cochlear implantation using systemic and topical steroids in conjunction with a round-window approach, a complete cochlear coverage electrode and two different electrode insertion speeds [60 mm/min (n = 18) vs. 15 mm/min (n = 22)] was performed. Results: The insertion speed had a significant impact on various insertion characteristics as well as hearing preservation and vestibular function. In conclusion, a slow electrode insertion speed appears to facilitate full electrode insertion, reduce the occurrence of insertion resistance as well as promote preservation of residual hearing and vestibular function after cochlear implantation.

Concepts: Clinical trial, Auditory system, Cochlea, Hearing impairment, Vestibular system, Ear, Sensorineural hearing loss, Inner ear

28

Meniere’s disease is characterized by sporadic episodes of vertigo, nystagmus, fluctuating sensorineural hearing loss, tinnitus and aural pressure. Since Meniere’s disease can affect different regions of the vestibular labyrinth, we investigated if electrical vestibular stimulation (EVS) which excites the entire vestibular labyrinth may be useful to reveal patchy endorgan pathology. We recorded three-dimensional electrically evoked vestibulo-ocular reflex (eVOR) to transient EVS using bilateral, bipolar 100-ms current steps at intensities of 0.9, 2.5, 5.0, 7.5 and 10.0 mA with dual-search coils in 12 unilateral Meniere’s patients. Their results were compared to 17 normal subjects. Normal eVOR had tonic and phasic spatiotemporal properties best described by the torsional component, which was four times larger than horizontal and vertical components. At EVS onset and offset of 8.9 ms latency, there were phasic eVOR initiation (M = 1,267 °/s(2)) and cessation (M = -1,675 °/s(2)) acceleration pulses, whereas during the constant portion of the EVS, there was a maintained tonic eVOR (M = 9.1 °/s) at 10 mA. However in Meniere’s disease, whilst latency of EVS onset and offset was normal at 9.0 ms, phasic eVOR initiation (M = 1,720 °/s(2)) and cessation (M = -2,523 °/s(2)) were enlarged at 10 mA. The initiation profile was a bimodal response, whilst the cessation profile frequently did not return to baseline. The tonic eVOR (M = 20.5 °/s) exhibited a ramped enhancement of about twice normal at 10 mA. Tonic eVOR enhancement was present for EVS >0.9 mA and disproportionately enhanced the torsional, vertical and horizontal components. These eVOR abnormalities may be a diagnostic indicator of Meniere’s disease and may explain the vertigo attacks in the presence of declining mechanically evoked vestibular responses.

Concepts: Vestibular system, Vestibulo-ocular reflex, Ear, Tinnitus, Ménière's disease, Pathologic nystagmus, Organ of Corti, Endolymph

28

Abstract Conclusion: The age-related changes in ocular vestibular-evoked myogenic potentials (oVEMPs) elicited by galvanic vestibular stimulation (GVS) and bone-conducted vibration (BCV) might be attributed to the morphological degeneration of the vestibular system. Objective: This study employed GVS and BCV modes for eliciting oVEMPs in healthy subjects to explore the effect of aging on the vestibulo-ocular reflex (VOR) pathway. Methods: Sixty-nine healthy subjects (aged 22-69 years) were divided into 5 groups of 12-19 subjects by decades of age. All subjects underwent oVEMPs using GVS and BCV modes. The prevalence and parameters of oVEMPs, including nI latency, pI latency, nI-pI interval, and nI-pI amplitude were measured and compared. Results: The prevalences of GVS-oVEMPs had nonsignificant differences among all age groups, whereas that of BCV-oVEMPs in the over-60 group was significantly lower than those in the under-60 groups. In GVS-oVEMPs, the group over 60 years had significantly longer nI, pI latencies, and smaller amplitudes when compared with those under 60 years. In BCV-oVEMPs, the nI and pI latencies in the over-60 group were significantly longer than those of the under-60 groups, while the nI-pI amplitudes of groups over 50 years were significantly smaller than those of groups under 50 years. All oVEMP parameters exhibited significant differences between GVS- and BCV-oVEMPs in each age group.

Concepts: Vestibular system, Vestibulo-ocular reflex, Ageing, Galvanic Vestibular Stimulation

28

Vergence is one of several viewing contexts that require an increase in the angular vestibular-ocular reflex (aVOR) response. A previous monkey study found that the vergence-mediated gain (eye/head velocity) increase of the aVOR was attenuated by 64 % when anodic currents, which preferentially lower the activity of irregularly firing vestibular afferents, were delivered to both labyrinths. We sought to determine whether there was similar evidence implicating a role for irregular afferents in the vergence-mediated gain increase of the human aVOR. Our study is based upon analysis of the aVOR evoked by head rotations, delivered passively while subjects viewed a near (15 cm) or far (124 cm) target and applying galvanic vestibular stimulation (GVS) via surface electrodes. We tested 12 subjects during 2-3 sessions each. Vestibular stimuli consisted of passive whole-body rotations (sinusoids from 0.05-3 Hz and 12-25°/s, and transients with peak ~15°, 50°/s, 500°/s(2)) and head-on-body impulses (peak ~30°, 150°/s, 3,000°/s(2)). GVS was on for 10 s every 20 s. All polarity combinations were tested, with emphasis on uni- and bi-lateral anodic inhibition. The average stimulus current was 5.9 ± 1.6 mA (range: 3-9.5 mA), vergence angle (during near viewing) was 22.6 ± 2.8° and slow-phase eye velocity caused by left anodic current stimulation with head stationary was -3.4 ± 1.1°/s, -0.2 ± 0.6°/s and 2.5 ± 1.4°/s (torsion, vertical, horizontal). No statistically significant GVS effects were observed, suggesting that surface electrode GVS has no effect on the vergence-mediated gain increase of the aVOR at the current levels (~6 mA) tolerated by most humans. We conclude that clinically practical transmastoid GVS does not effectively silence irregular afferents and hypothesize that currents >10 mA are needed to reproduce the monkey results.

Concepts: Cathode, Electrochemistry, Vestibular system, Vestibulo-ocular reflex, Battery, Electrode, Anode, Galvanic Vestibular Stimulation

27

BACKGROUND: Patients with vestibular migraine (VM) suffer attacks of vertigo that often occur in isolation from headache attacks. We aimed to assess and compare vestibular function interictally in patients with VM and patients with migraine without vertigo (M). METHODS: Thirty-eight patients diagnosed with definite VM according to the Neuhauser criteria, and 32 patients diagnosed with M according to the International Headache Society criteria were examined between attacks using a broad battery of bedside vestibular tests, a caloric test, and videonystagmography. RESULTS: Overall, 70% of the VM patients and 34% of the M patients showed abnormalities on one or more of the 14 performed vestibular tests (P = .006). Abnormal findings were more frequent in VM than in M patients on Romberg’s test, test for voluntary fixation suppression of the vestibular ocular reflex and test for static positional nystagmus (P = .03, .01 and .04, respectively). There were no differences in the distribution of central and peripheral vestibular signs between VM and M patients. CONCLUSIONS: Vestibular abnormalities were present interictally among both VM and M patients, but were found about twice as frequently among VM patients. This may indicate that subclinical vestibular dysfunction is an integral part of migraine pathology in general, and not solely in VM.

Concepts: Comparison, Vestibular system, Vestibulo-ocular reflex, Headaches, Pathologic nystagmus, Romberg's test, Caloric reflex test

27

This chapter addresses the important and undertreated problem of balance disorders. The chapter has a simplified summary of the physiology of balance problems in order to set the scene. The issue of assessment is next addressed with discussion of important tests including the Berg Balance Scale and the Get Up and Go Test, and others. Posturography is discussed as well as assessment of the gravitional vertical. The assessment of vestibular function is of key importance and discussed in some detail. The focus of the chapter is on balance rehabilitation. Re-training of postural alignment and of sensory strategies are key but adaptation of the environment and re-training of cognitive strategies are also helpful in individual cases. Vestibular exercises can also be used. The chapter then critically analyses the efficacy of these treatments in specific balance disorders such as in stroke, Parkinson disease, polyneuropathies, multiple sclerosis, and vestibular disorders. Overall, there is a growing body of evidence that balance rehabilitation improves symptoms, function, and quality of life for those troubled by these disabling problems.

Concepts: Stroke, Neurology, Parkinson's disease, Vestibular system, Pathologic nystagmus, Labyrinthitis, Posturography, Balance disorder