SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Vertebral column

398

There is currently no evidence that the intervertebral discs (IVDs) can respond positively to exercise in humans. Some authors have argued that IVD metabolism in humans is too slow to respond anabolically to exercise within the human lifespan. Here we show that chronic running exercise in men and women is associated with better IVD composition (hydration and proteoglycan content) and with IVD hypertrophy. Via quantitative assessment of physical activity we further find that accelerations at fast walking and slow running (2 m/s), but not high-impact tasks, lower intensity walking or static positions, correlated to positive IVD characteristics. These findings represent the first evidence in humans that exercise can be beneficial for the IVD and provide support for the notion that specific exercise protocols may improve IVD material properties in the spine. We anticipate that our findings will be a starting point to better define exercise protocols and physical activity profiles for IVD anabolism in humans.

Concepts: Metabolism, Exercise, Vertebral column, Physical quantities, Intervertebral disc, Stretching, Anabolism, Catabolism

245

Recent studies suggest there is a relationship between intervertebral disc herniation and vertebral shape. The nature of this relationship is unclear, however. Humans are more commonly afflicted with spinal disease than are non-human primates and one suggested explanation for this is the stress placed on the spine by bipedalism. With this in mind, we carried out a study of human, chimpanzee, and orangutan vertebrae to examine the links between vertebral shape, locomotion, and Schmorl’s nodes, which are bony indicators of vertical intervertebral disc herniation. We tested the hypothesis that vertical disc herniation preferentially affects individuals with vertebrae that are towards the ancestral end of the range of shape variation within Homo sapiens and therefore are less well adapted for bipedalism.

Concepts: Human, Spinal disc herniation, Vertebral column, Primate, Hominidae, Chimpanzee, Intervertebral disc, Human evolution

169

BACKGROUND: This study investigated the incidence, imaging characteristics and mechanical factors in scoliotic patients with pectus excavatum. METHODS: A total of 142 scoliostic patients with pectus excavatum were evaluated prior to operation. The evaluation included a complete physical exam, phenotype and severity of the pectus excavatum, incidence and severity of scoliosis, and analysis of radiological images, including calculation of the Haller index. RESULTS: Twenty five out of 142 patients (17.61%) with pectus excavatum had scoliosis with a Cobb angle >10 degrees, and in 80.00% of the cases the spinal column was bent to the right. Seventeen patients had bent-to-the-right spines that involved the 6th to 10 th thoracic vertebrae. We found that 23 out of 25 patients with a Cobb angle more than 10 [degree sign] were teenagers and adults. The incidence of scoliosis was only 6.06% in the children under 11 years whereas it was 21.79% in the teenage group. CONCLUSIONS: Mechanical forces appear to play a role in the coexistence of pectus excavatum and scoliosis. There is a relationship between age, severity (Haller index), asymmetry and scoliosis. The heart and mediastinum play a role in providing an outward force to the left of the sternum which may be an important reason for the coexistence of pectus excavatum and scoliosis, but the correlation needs further proof.

Concepts: Vertebral column, Pectus excavatum, Haller index, Chest, Degree, Sternum, Scoliosis

162

Fishes have adapted a number of different behaviors to move out of the water, but none have been described as being able to walk on land with a tetrapod-like gait. Here we show that the blind cavefish Cryptotora thamicola walks and climbs waterfalls with a salamander-like diagonal-couplets lateral sequence gait and has evolved a robust pelvic girdle that shares morphological features associated with terrestrial vertebrates. In all other fishes, the pelvic bones are suspended in a muscular sling or loosely attached to the pectoral girdle anteriorly. In contrast, the pelvic girdle of Cryptotora is a large, broad puboischiadic plate that is joined to the iliac process of a hypertrophied sacral rib; fusion of these bones in tetrapods creates an acetabulum. The vertebral column in the sacral area has large anterior and posterior zygapophyses, transverse processes, and broad neural spines, all of which are associated with terrestrial organisms. The diagonal-couplet lateral sequence gait was accomplished by rotation of the pectoral and pelvic girdles creating a standing wave of the axial body. These findings are significant because they represent the first example of behavioural and morphological adaptation in an extant fish that converges on the tetrapodal walking behaviour and morphology.

Concepts: Vertebral column, Pelvis, Human anatomy, Acetabulum, Walking, Pubis, Sacrum, Ilium

139

This study was aimed to introduce a novel entry point for pedicle screw fixation in the thoracic spine and compare it with the traditional entry point. A novel entry point was found with the aim of improving accuracy, safety and stability of pedicle screw technique based on anatomical structures of the spine. A total of 76 pieces of normal thoracic CT images at the transverse plane and the thoracic pedicle anatomy of 6 cadaveric specimens were recruited. Transverse pedicle angle (TPA), screw length, screw placement accuracy rate and axial pullout strength of the two different entry point groups were compared. There were significant differences in the TPA, screw length, and the screw placement accuracy rate between the two groups (P<0.05). The maximum axial pullout strength of the novel entry point group was slightly larger than that of the traditional group. However, the difference was not significant (P>0.05). The novel entry point significantly improved the accuracy, stability and safety of pedicle screw placement. With reference to the advantages above, the new entry point can be used for spinal internal fixations in the thoracic spine.

Concepts: Vertebral column, Symmetry, Group, Group theory, Anatomy, Human anatomy, Thoracic vertebrae, Space group

82

Increased excavation of dinosaurs from China over the last two decades has enriched the record of Asian titanosauriform sauropods. However, the relationships of these sauropods remain contentious, and hinges on a few well-preserved taxa, such as Euhelopus zdanskyi. Here we describe a new sauropod, Yongjinglong datangi gen. nov. et sp. nov., from the Lower Cretaceous Hekou Group in the Lanzhou Basin of Gansu Province, northwestern China. Yongjinglong datangi is characterized by the following unique combination of characters, including seven autapomorphies: long-crowned, spoon-shaped premaxillary tooth; axially elongate parapophyses on the cervical vertebra; very deep lateral pneumatic foramina on the lateral surfaces of the cervical and cranial dorsal vertebral centra; low, unbifurcated neural spine fused with the postzygapophyses to form a cranially-pointing, triangular plate in a middle dorsal vertebra; an “XI”-shaped configuration of the laminae on the arches of the middle dorsal vertebrae; a very long scapular blade with straight cranial and caudal edges; and a tall, deep groove on the lateral surface of the distal shaft of the radius. The new specimen shares several features with other sauropods: a pronounced M. triceps longus tubercle on the scapula and ventrolaterally elongated parapophyses in its cervical vertebra as in Euhelopodidae. Based on phylogenetic analyses Yongjinglong datangi is highly derived within Titanosauria, which suggests either a remarkable convergence with more basal titanosauriform sauropods in the Early Cretaceous or a retention of plesiomorphic features that were lost in other titanosaurians. The morphology and remarkable length of the scapulocoracoid reveal an unusual relationship between the shoulder and the middle trunk: the scapulocoracoid spans over half of the length of the trunk. The medial, notch-shaped coracoid foramen and the partially fused scapulocoracoid synostosis suggest that the specimen is a subadult individual. This specimen sheds new light on the diversity of Early Cretaceous Titanosauriformes in China.

Concepts: Vertebral column, Vertebra, Cretaceous, Cervical vertebrae, Sauropoda, Dinosaur, Titanosaur, Euhelopus

75

Spinal immobilisation during extrication of patients in road traffic collisions is routinely used despite the lack of evidence for this practice. In a previous proof of concept study (n=1), we recorded up to four times more cervical spine movement during extrication using conventional techniques than self-controlled extrication.

Concepts: Lumbar vertebrae, Vertebral column, Cervical vertebrae, Thoracic vertebrae, Road transport, Road accidents, Car safety

69

A new oviraptorid dinosaur from the Late Cretaceous of Ganzhou, bringing oviraptrotid diversity of this region to seven taxa, is described. It is characterized by a distinct cassowary-like crest on the skull, no pleurocoels on the centra from the second through fourth cervical vertebrae, a neck twice as long as the dorsal vertebral column and slightly longer than the forelimb (including the manus). Phylogenetic analysis recovers the new oviraptorid taxon, Corythoraptor jacobsi, as closely related to Huanansaurus from Ganzhou. Osteochronology suggests that the type specimen of Corythoraptor had not reached stationary growth stage but died while decreasing growth rates. The histology implies that it would correspond to an immature individual approximately eight years old. We hypothesize, based on the inner structure compared to that in modern cassowaries, that the prominent casque of Corythoraptor was a multifunction-structure utilized in display, communication and probably expression of the fitness during mating seasons.

Concepts: Biology, Vertebral column, Skull, Vertebra, Cervical vertebrae, Dinosaur, Botanical nomenclature

69

Degenerative changes are commonly found in spine imaging but often occur in pain-free individuals as well as those with back pain. We sought to estimate the prevalence, by age, of common degenerative spine conditions by performing a systematic review studying the prevalence of spine degeneration on imaging in asymptomatic individuals.

Concepts: Systematic review, Vertebral column, Degenerative disc disease, Chronic pain

54

It has been suggested that deep squats could cause an increased injury risk of the lumbar spine and the knee joints. Avoiding deep flexion has been recommended to minimize the magnitude of knee-joint forces. Unfortunately this suggestion has not taken the influence of the wrapping effect, functional adaptations and soft tissue contact between the back of thigh and calf into account. The aim of this literature review is to assess whether squats with less knee flexion (half/quarter squats) are safer on the musculoskeletal system than deep squats. A search of relevant scientific publications was conducted between March 2011 and January 2013 using PubMed. Over 164 articles were included in the review. There are no realistic estimations of knee-joint forces for knee-flexion angles beyond 50° in the deep squat. Based on biomechanical calculations and measurements of cadaver knee joints, the highest retropatellar compressive forces and stresses can be seen at 90°. With increasing flexion, the wrapping effect contributes to an enhanced load distribution and enhanced force transfer with lower retropatellar compressive forces. Additionally, with further flexion of the knee joint a cranial displacement of facet contact areas with continuous enlargement of the retropatellar articulating surface occurs. Both lead to lower retropatellar compressive stresses. Menisci and cartilage, ligaments and bones are susceptible to anabolic metabolic processes and functional structural adaptations in response to increased activity and mechanical influences. Concerns about degenerative changes of the tendofemoral complex and the apparent higher risk for chondromalacia, osteoarthritis, and osteochondritis in deep squats are unfounded. With the same load configuration as in the deep squat, half and quarter squat training with comparatively supra-maximal loads will favour degenerative changes in the knee joints and spinal joints in the long term. Provided that technique is learned accurately under expert supervision and with progressive training loads, the deep squat presents an effective training exercise for protection against injuries and strengthening of the lower extremity. Contrary to commonly voiced concern, deep squats do not contribute increased risk of injury to passive tissues.

Concepts: Vertebral column, Cartilage, Osteoarthritis, Knee, Joint, Flexion, Extension, Semimembranosus muscle