Discover the most talked about and latest scientific content & concepts.

Concept: Vehicle


Distracted driving attributable to the performance of secondary tasks is a major cause of motor vehicle crashes both among teenagers who are novice drivers and among adults who are experienced drivers.

Concepts: Vehicle, Automobile, Vehicles, Motor vehicle


Night-shift workers are at high risk of drowsiness-related motor vehicle crashes as a result of circadian disruption and sleep restriction. However, the impact of actual night-shift work on measures of drowsiness and driving performance while operating a real motor vehicle remains unknown. Sixteen night-shift workers completed two 2-h daytime driving sessions on a closed driving track at the Liberty Mutual Research Institute for Safety: (i) a postsleep baseline driving session after an average of 7.6 ± 2.4 h sleep the previous night with no night-shift work, and (ii) a postnight-shift driving session following night-shift work. Physiological measures of drowsiness were collected, including infrared reflectance oculography, electroencephalography, and electrooculography. Driving performance measures included lane excursions, near-crash events, and drives terminated because of failure to maintain control of the vehicle. Eleven near-crashes occurred in 6 of 16 postnight-shift drives (37.5%), and 7 of 16 postnight-shift drives (43.8%) were terminated early for safety reasons, compared with zero near-crashes or early drive terminations during 16 postsleep drives (Fishers exact: P = 0.0088 and P = 0.0034, respectively). Participants had a significantly higher rate of lane excursions, average Johns Drowsiness Scale, blink duration, and number of slow eye movements during postnight-shift drives compared with postsleep drives (3.09/min vs. 1.49/min; 1.71 vs. 0.97; 125 ms vs. 100 ms; 35.8 vs. 19.1; respectively, P < 0.05 for all). Night-shift work increases driver drowsiness, degrading driving performance and increasing the risk of near-crash drive events. With more than 9.5 million Americans working overnight or rotating shifts and one-third of United States commutes exceeding 30 min, these results have implications for traffic and occupational safety.

Concepts: Sleep, Termination of employment, Vehicle, Automobile, Vehicles


Human-mediated dispersal is known as an important driver of long-distance dispersal for plants but underlying mechanisms have rarely been assessed. Road corridors function as routes of secondary dispersal for many plant species but the extent to which vehicles support this process remains unclear. In this paper we quantify dispersal distances and seed deposition of plant species moved over the ground by the slipstream of passing cars. We exposed marked seeds of four species on a section of road and drove a car along the road at a speed of 48 km/h. By tracking seeds we quantified movement parallel as well as lateral to the road, resulting dispersal kernels, and the effect of repeated vehicle passes. Median distances travelled by seeds along the road were about eight meters for species with wind dispersal morphologies and one meter for species without such adaptations. Airflow created by the car lifted seeds and resulted in longitudinal dispersal. Single seeds reached our maximum measuring distance of 45 m and for some species exceeded distances under primary dispersal. Mathematical models were fit to dispersal kernels. The incremental effect of passing vehicles on longitudinal dispersal decreased with increasing number of passes as seeds accumulated at road verges. We conclude that dispersal by vehicle airflow facilitates seed movement along roads and accumulation of seeds in roadside habitats. Dispersal by vehicle airflow can aid the spread of plant species and thus has wide implications for roadside ecology, invasion biology and nature conservation.

Concepts: Plant, Transport, Seed, Walking, Vehicle, Automobile, The Road, Seed dispersal


Impaired driving is a recognized cause of major injury. Contemporary data are lacking on exposures to impaired driving behaviours and related injury among young adolescents, as well as inequities in these youth risk behaviours.

Concepts: Vehicle, Automobile


BACKGROUND: Motor vehicle collisions (MVCs) that result in one or more fatalities on the 400-series Highways represent a serious public health problem in Ontario, and were estimated to have cost $11 billion in 2004. To date, no studies have examined risk factors for fatal MVCs on Ontario’s 400 series highways.The investigate how demographic and environmental risk factors are associated with fatal MVCs on Ontario’s 400-Series Highways. METHODS: Data were provided from the Ontario Ministry of Transport database, and included driver demographics, vehicle information, environmental descriptors, structural descriptors, as well as collision information (date and time) , and severity of the collision. Multivariate analysis was used to identify factors significantly associated with the odds of dying in a collision. RESULTS: There were 53,526 vehicles involved in collisions from 2001 to 2006 included in our analysis. Results from the multivariate analysis suggest that collisions with older age and male drivers were associated with an increased risk of involving a fatality. Highway 405 and an undivided 2-way design proved to be the most fatal structural configurations. Collisions in the summer, Fridays, between 12 am-4 am, and in drifting snow conditions during the wintertime were also shown to have a significantly increased risk of fatality. CONCLUSION: Our results suggest that interventions to reduce deaths as a result of MVCs should focus on both driver-related and road-related modifications.

Concepts: Death, Demography, Highway, Ontario, Vehicle, Vehicles, Highway 401, 400-series highways


We examined the effects of a 2009 increase in alcohol taxes in Illinois on alcohol-related fatal motor vehicle crashes.

Concepts: Vehicle, Tax


Accumulated evidence supports the promotion of structured exercise for treating prediabetes and preventing Type 2 diabetes. Unfortunately, contemporary societal changes in lifestyle behaviors (occupational, domestic, transportation, and leisure-time) have resulted in a notable widespread deficiency of non-exercise physical activity (e.g., ambulatory activity undertaken outside the context of purposeful exercise) that has been simultaneously exchanged for an excess in sedentary behaviors (e.g., desk work, labor saving devices, motor vehicle travel, and screen-based leisure-time pursuits). It is possible that the known beneficial effects of more structured forms of exercise are attenuated or otherwise undermined against this backdrop of normalized and ubiquitous slothful living. Although public health guidelines have traditionally focused on promoting a detailed exercise prescription, it is evident that the emergent need is to revise and expand the message to address this insidious and deleterious lifestyle shift. Specifically, we recommend that adults avoid averaging <5,000 steps/day and strive to average ≥7,500 steps/day, of which ≥3,000 steps (representing at least 30 min) should be taken at a cadence ≥100 steps/min. They should also practice regularly breaking up extended bouts of sitting with ambulatory activity. Simply put, we must consider advocating a whole message to "walk more, sit less, and exercise."

Concepts: Hypertension, Insulin, Diabetes mellitus type 2, Obesity, Exercise, Overweight, Vehicle, Automobile


With the potential to save nearly 30 000 lives per year in the United States, autonomous vehicles portend the most significant advance in auto safety history by shifting the focus from minimization of postcrash injury to collision prevention. I have delineated the important public health implications of autonomous vehicles and provided a brief analysis of a critically important ethical issue inherent in autonomous vehicle design. The broad expertise, ethical principles, and values of public health should be brought to bear on a wide range of issues pertaining to autonomous vehicles. (Am J Public Health. Published online ahead of print February 16, 2017: e1-e6. doi:10.2105/AJPH.2016.303628).

Concepts: Public health, United States, Ethics, Virtue, Morality, Bioethics, Vehicle, Automobile


BACKGROUND: This study examined the impact of transportation infrastructure at intersection and non-intersection locations on bicycling injury risk. METHODS: In Vancouver and Toronto, we studied adult cyclists who were injured and treated at a hospital emergency department. A case-crossover design compared the infrastructure of injury and control sites within each injured bicyclist’s route. Intersection injury sites (N=210) were compared to randomly selected intersection control sites (N=272). Non-intersection injury sites (N=478) were compared to randomly selected non-intersection control sites (N=801). RESULTS: At intersections, the types of routes meeting and the intersection design influenced safety. Intersections of two local streets (no demarcated traffic lanes) had approximately one-fifth the risk (adjusted OR 0.19, 95% CI 0.05 to 0.66) of intersections of two major streets (more than two traffic lanes). Motor vehicle speeds less than 30 km/h also reduced risk (adjusted OR 0.52, 95% CI 0.29 to 0.92). Traffic circles (small roundabouts) on local streets increased the risk of these otherwise safe intersections (adjusted OR 7.98, 95% CI 1.79 to 35.6). At non-intersection locations, very low risks were found for cycle tracks (bike lanes physically separated from motor vehicle traffic; adjusted OR 0.05, 95% CI 0.01 to 0.59) and local streets with diverters that reduce motor vehicle traffic (adjusted OR 0.04, 95% CI 0.003 to 0.60). Downhill grades increased risks at both intersections and non-intersections. CONCLUSIONS: These results provide guidance for transportation planners and engineers: at local street intersections, traditional stops are safer than traffic circles, and at non-intersections, cycle tracks alongside major streets and traffic diversion from local streets are safer than no bicycle infrastructure.

Concepts: Risk, Cycling, Road, Vehicle, Automobile, Lane, Bicycle, Utility cycling


In this paper, a new robotic architecture for plant phenotyping is being introduced. The architecture consists of two robotic platforms: an autonomous ground vehicle (Vinobot) and a mobile observation tower (Vinoculer). The ground vehicle collects data from individual plants, while the observation tower oversees an entire field, identifying specific plants for further inspection by the Vinobot. The advantage of this architecture is threefold: first, it allows the system to inspect large areas of a field at any time, during the day and night, while identifying specific regions affected by biotic and/or abiotic stresses; second, it provides high-throughput plant phenotyping in the field by either comprehensive or selective acquisition of accurate and detailed data from groups or individual plants; and third, it eliminates the need for expensive and cumbersome aerial vehicles or similarly expensive and confined field platforms. As the preliminary results from our algorithms for data collection and 3D image processing, as well as the data analysis and comparison with phenotype data collected by hand demonstrate, the proposed architecture is cost effective, reliable, versatile, and extendable.

Concepts: Natural selection, Costs, Plant, Phenotype, Cost, Vehicle, Tower, Inspection