SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Vascular endothelial growth factor

250

Dentin-pulp complex regeneration is a promising alternative treatment for the irreversible pulpitis caused by tooth trauma or dental caries. This process mainly relies on the recruitment of endogenous or the transplanted dental pulp stem cells (DPSCs) to guide dentin-pulp tissue formation. Platelet-derived growth factor (PDGF), a well-known potent mitogenic, angiogenic, and chemoattractive agent, has been widely used in tissue regeneration. However, the mechanisms underlying the therapeutic effects of PDGF on dentin-pulp complex regeneration are still unclear. In this study, we tested the effect of PDGF-BB on dentin-pulp tissue regeneration by establishing PDGF-BB gene-modified human dental pulp stem cells (hDPSCs) using a lentivirus. Our results showed that PDGF-BB can significantly enhance hDPSC proliferation and odontoblastic differentiation. Furthermore, PDGF-BB and vascular endothelial growth factor (VEGF) secreted by hDPSCs enhanced angiogenesis. The chemoattractive effect of PDGF-BB on hDPSCs was also confirmed using a Transwell chemotactic migration model. We further determined that PDGF-BB facilitates hDPSCs migration via the activation of the phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway. In vivo, CM-DiI-labeled hDPSCs were injected subcutaneously into mice, and our results showed that more labeled cells were recruited to the sites implanted with calcium phosphate cement scaffolds containing PDGF-BB gene-modified hDPSCs. Finally, the tissue-engineered complexes were implanted subcutaneously in mice for 12 weeks, the Lenti-PDGF group generated more dentin-like mineralized tissue which showed positive staining for the DSPP protein, similar to tooth dentin tissue, and was surrounded by highly vascularized dental pulp-like connective tissue. Taken together, our data demonstrated that the PDGF-BB possesses a powerful function in prompting stem cell-based dentin-pulp tissue regeneration. Stem Cells Translational Medicine 2017.

Concepts: Angiogenesis, Growth factor, Vascular endothelial growth factor, Cellular differentiation, Teeth, Dental caries, Dentin, Platelet-derived growth factor

195

As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.

Concepts: Cancer, Breast cancer, Metastasis, Oncology, Growth factor, Vascular endothelial growth factor, Von Willebrand factor, Single photon emission computed tomography

172

Endothelial hyperpermeability induced by hyperglycemia is the initial step in the development of atherosclerosis, one of the most serious cardiovascular complications in diabetes. In the present study, we investigated the effects of resveratrol (RSV), a bioactive ingredient extracted from Chinese herb rhizoma polygonum cuspidatum, on permeability in vitro and the molecular mechanisms involved. Permeability was assessed by the efflux of fluorescein isothiocyanate (FITC)-dextran permeated through the monolayer endothelial cells (ECs). The mRNA levels, protein expressions, and secretions were measured by quantitative real-time PCR, western blot, and ELISA, respectively. Increased permeability and caveolin-1 (cav-1) expression were observed in monolayer ECs exposed to high glucose. Resveratrol treatment alleviated the hyperpermeability and the overexpression of cav-1 induced by high glucose in a dose-dependent manner. β-Cyclodextrin, a structural inhibitor of caveolae, reduced the hyperpermeability caused by high glucose. Resveratrol also down-regulated the increased expressions of vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR, or VEGF receptor-2) induced by high glucose. Inhibition of VEGF/KDR pathway by using SU5416, a selective inhibitor of KDR, alleviated the hyperpermeability and the cav-1 overexpression induced by high glucose. The above results demonstrate that RSV ameliorates caveolae-mediated hyperpermeability induced by high glucose via VEGF/KDR pathway.

Concepts: Protein, Gene expression, Molecular biology, Signal transduction, Enzyme, Angiogenesis, Vascular endothelial growth factor, Endothelium

168

Tetraspanins have emerged as key players in malignancy and inflammatory diseases, yet little is known about their roles in angiogenesis, and nothing about their involvement in lymphangiogenesis. We here found that tetraspanins are abundantly expressed in human lymphatic endothelial cells (LEC) and tumor LECs. After intrathoracic tumor implantation, metastasis to lymph nodes was diminished and accompanied by decreased angiogenesis and lymphangiogenesis in tetraspanin CD9 Knockout (KO) mice. Moreover, lymphangiomas induced in CD9-KO mice were less pronounced with decreased lymphangiogenesis when compared with wild-type mice. While mouse LEC isolated from CD9-KO mice showed normal adhesion, lymphangiogenesis was markedly impaired in several assays (migration, proliferation, and cable formation) in vitro, and in the lymphatic ring assay ex vivo. Consistent with these findings in mouse LEC, knocking down of CD9 in human LEC also showed decreased migration, proliferation, and cable formation. Immunoprecipitation analysis demonstrated that deletion of CD9 in LEC diminished functional complexes between vascular endothelial growth factor receptor (VEGFR)-3, and integrins (α5 and α9). Therefore, knocking down of CD9 in LEC attenuated VEGFR-3 signaling as well as down-stream signaling such as Erk, and p38 upon VEGF-C stimulation. Finally, double-deletion of CD9/CD81 in mice exhibited abnormal development of lymphatic vasculature in the trachea and diaphragm, suggesting that CD9 and a closely related tetraspanin CD81 coordinately play an essential role in physiological lymphangiogenesis. In conclusion, tetraspanin CD9 modulate molecular organization of integrins in LEC, thereby supporting several functions required for lymphangiogenesis.

Concepts: Inflammation, Angiogenesis, Blood vessel, Vascular endothelial growth factor, In vivo, Lymphatic system, In vitro, CD9

168

Neuropilin (Nrp) receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF) family of proangiogenic cytokines and the semaphorin 3 (Sema3) family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5) isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

Concepts: Signal transduction, Angiogenesis, Hormone, Vascular endothelial growth factor, Cell signaling, Endothelium, Neuropilin, Semaphorin

149

Immunotherapy has produced durable clinical benefit in patients with metastatic renal cell cancer (RCC). In the past, patients treated with interferon-alpha (IFN) and interleukin-2 (IL-2) have achieved complete responses, many of which have lasted for multiple decades. More recently, a large number of new agents have been approved for RCC, several of which attack tumor angiogenesis by inhibiting vascular endothelial growth factors (VEGF) and VEGF receptors (VEGFR), as well as tumor metabolism, inhibiting the mammalian target of rapamycin (mTOR). Additionally, a new class of immunotherapy agents, immune checkpoint inhibitors, is emerging and will play a significant role in the treatment of patients with RCC. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a Task Force, which met to consider the current role of approved immunotherapy agents in RCC, to provide guidance to practicing clinicians by developing consensus recommendations and to set the stage for future immunotherapeutic developments in RCC.

Concepts: Immune system, Cancer, Angiogenesis, Vascular endothelial growth factor, Interferon, VEGF receptors, Renal cell carcinoma, Immunotherapy

104

Background Cabozantinib is an oral, small-molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptor (VEGFR) as well as MET and AXL, each of which has been implicated in the pathobiology of metastatic renal-cell carcinoma or in the development of resistance to antiangiogenic drugs. This randomized, open-label, phase 3 trial evaluated the efficacy of cabozantinib, as compared with everolimus, in patients with renal-cell carcinoma that had progressed after VEGFR-targeted therapy. Methods We randomly assigned 658 patients to receive cabozantinib at a dose of 60 mg daily or everolimus at a dose of 10 mg daily. The primary end point was progression-free survival. Secondary efficacy end points were overall survival and objective response rate. Results Median progression-free survival was 7.4 months with cabozantinib and 3.8 months with everolimus. The rate of progression or death was 42% lower with cabozantinib than with everolimus (hazard ratio, 0.58; 95% confidence interval [CI] 0.45 to 0.75; P<0.001). The objective response rate was 21% with cabozantinib and 5% with everolimus (P<0.001). A planned interim analysis showed that overall survival was longer with cabozantinib than with everolimus (hazard ratio for death, 0.67; 95% CI, 0.51 to 0.89; P=0.005) but did not cross the significance boundary for the interim analysis. Adverse events were managed with dose reductions; doses were reduced in 60% of the patients who received cabozantinib and in 25% of those who received everolimus. Discontinuation of study treatment owing to adverse events occurred in 9% of the patients who received cabozantinib and in 10% of those who received everolimus. Conclusions Progression-free survival was longer with cabozantinib than with everolimus among patients with renal-cell carcinoma that had progressed after VEGFR-targeted therapy. (Funded by Exelixis; METEOR ClinicalTrials.gov number, NCT01865747 .).

Concepts: Clinical trial, Cancer, Signal transduction, Angiogenesis, Growth factor, Vascular endothelial growth factor, Protein kinase, Renal cell carcinoma

79

Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.Cell Research advance online publication 17 October 2017; doi:10.1038/cr.2017.126.

Concepts: Nutrition, Obesity, Vascular endothelial growth factor, Adipose tissue, Tissues, Fasting, Brown adipose tissue, Intermittent fasting

66

Background Sunitinib, a vascular endothelial growth factor pathway inhibitor, is an effective treatment for metastatic renal-cell carcinoma. We sought to determine the efficacy and safety of sunitinib in patients with locoregional renal-cell carcinoma at high risk for tumor recurrence after nephrectomy. Methods In this randomized, double-blind, phase 3 trial, we assigned 615 patients with locoregional, high-risk clear-cell renal-cell carcinoma to receive either sunitinib (50 mg per day) or placebo on a 4-weeks-on, 2-weeks-off schedule for 1 year or until disease recurrence, unacceptable toxicity, or consent withdrawal. The primary end point was disease-free survival, according to blinded independent central review. Secondary end points included investigator-assessed disease-free survival, overall survival, and safety. Results The median duration of disease-free survival was 6.8 years (95% confidence interval [CI], 5.8 to not reached) in the sunitinib group and 5.6 years (95% CI, 3.8 to 6.6) in the placebo group (hazard ratio, 0.76; 95% CI, 0.59 to 0.98; P=0.03). Overall survival data were not mature at the time of data cutoff. Dose reductions because of adverse events were more frequent in the sunitinib group than in the placebo group (34.3% vs. 2%), as were dose interruptions (46.4% vs. 13.2%) and discontinuations (28.1% vs. 5.6%). Grade 3 or 4 adverse events were more frequent in the sunitinib group (48.4% for grade 3 events and 12.1% for grade 4 events) than in the placebo group (15.8% and 3.6%, respectively). There was a similar incidence of serious adverse events in the two groups (21.9% for sunitinib vs. 17.1% for placebo); no deaths were attributed to toxic effects. Conclusions Among patients with locoregional clear-cell renal-cell carcinoma at high risk for tumor recurrence after nephrectomy, the median duration of disease-free survival was significantly longer in the sunitinib group than in the placebo group, at a cost of a higher rate of toxic events. (Funded by Pfizer; S-TRAC ClinicalTrials.gov number, NCT00375674 .).

Concepts: Clinical trial, Cancer, Disease, Chemotherapy, Vascular endothelial growth factor, Normal distribution, Toxicity, Renal cell carcinoma

45