SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Vacuum tube

217

BACKGROUND: Screen entertainment for young children has been associated with several aspects of psychosocial adjustment. Most research is from North America and focuses on television. Few longitudinal studies have compared the effects of TV and electronic games, or have investigated gender differences. PURPOSE: To explore how time watching TV and playing electronic games at age 5 years each predicts change in psychosocial adjustment in a representative sample of 7 year-olds from the UK. METHODS: Typical daily hours viewing television and playing electronic games at age 5 years were reported by mothers of 11 014 children from the UK Millennium Cohort Study. Conduct problems, emotional symptoms, peer relationship problems, hyperactivity/inattention and prosocial behaviour were reported by mothers using the Strengths and Difficulties Questionnaire. Change in adjustment from age 5 years to 7 years was regressed on screen exposures; adjusting for family characteristics and functioning, and child characteristics. RESULTS: Watching TV for 3 h or more at 5 years predicted a 0.13 point increase (95% CI 0.03 to 0.24) in conduct problems by 7 years, compared with watching for under an hour, but playing electronic games was not associated with conduct problems. No associations were found between either type of screen time and emotional symptoms, hyperactivity/inattention, peer relationship problems or prosocial behaviour. There was no evidence of gender differences in the effect of screen time. CONCLUSIONS: TV but not electronic games predicted a small increase in conduct problems. Screen time did not predict other aspects of psychosocial adjustment. Further work is required to establish causal mechanisms.

Concepts: Vacuum tube, Cohort study, Longitudinal study, Research methods, Causality, United Kingdom, Radio, Television

180

The grand vision of manufacturing large-area emissive devices with low-cost roll-to-roll coating methods, akin to how newspapers are produced, appeared with the emergence of the organic light-emitting diode about 20 years ago. Today, small organic light-emitting diode displays are commercially available in smartphones, but the promise of a continuous ambient fabrication has unfortunately not materialized yet, as organic light-emitting diodes invariably depend on the use of one or more time- and energy-consuming process steps under vacuum. Here we report an all-solution-based fabrication of an alternative emissive device, a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant >1-μm-thick active material that is doped in situ during operation. It is notable that the initial preparation of inks, the subsequent coating of the constituent layers and the final device operation all could be executed under ambient air.

Concepts: Cathode, Vacuum tube, Light, Solar cell, Electrode, Light-emitting diode, Diode, Light-emitting diodes

176

In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory.

Concepts: Vacuum tube, Integrated circuit, Oscillation, Computer, Computation, Computer science, Computing, Electronics

118

Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy.

Concepts: Time, Vacuum tube, Chemistry, Semiconductor, Transistor, Diode, Control, Electronics

63

To assess longitudinal associations between screen based media use (television and computer hours, having a TV in the bedroom) and body fatness among UK children.

Concepts: Vacuum tube, Cohort study, Longitudinal study, Cohort, United Kingdom, Radio, Television, BBC

54

The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

Concepts: Vacuum tube, Integrated circuit, Transistor, Carbon nanotube, Computer, Diode, Electronics, Electronic engineering

44

Today’s consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

Concepts: Vacuum tube, Electricity, Integrated circuit, Transistor, Capacitor, Electronics, Radio, Electronic engineering

35

Molecular electronics aims to miniaturize electronic devices by using subnanometre-scale active components. A single-molecule diode, a circuit element that directs current flow, was first proposed more than 40 years ago and consisted of an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Several single-molecule diodes have since been realized in junctions featuring asymmetric molecular backbones, molecule-electrode linkers or electrode materials. Despite these advances, molecular diodes have had limited potential for applications due to their low conductance, low rectification ratios, extreme sensitivity to the junction structure and high operating voltages. Here, we demonstrate a powerful approach to induce current rectification in symmetric single-molecule junctions using two electrodes of the same metal, but breaking symmetry by exposing considerably different electrode areas to an ionic solution. This allows us to control the junction’s electrostatic environment in an asymmetric fashion by simply changing the bias polarity. With this method, we reliably and reproducibly achieve rectification ratios in excess of 200 at voltages as low as 370 mV using a symmetric oligomer of thiophene-1,1-dioxide. By taking advantage of the changes in the junction environment induced by the presence of an ionic solution, this method provides a general route for tuning nonlinear nanoscale device phenomena, which could potentially be applied in systems beyond single-molecule junctions.

Concepts: Cathode, Vacuum tube, Semiconductor, Transistor, Electrode, Diode, Electronics, P-n junction

30

Despite several years of research into graphene electronics, sufficient on/off current ratio I(on)/I(off) in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier “barristor” (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier’s height to be tuned to 0.2 electron volt by adjusting graphene’s work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.

Concepts: Electron, Vacuum tube, Semiconductor, Transistor, Diode, Logic gate, Volt, Threshold voltage

28

We report on p-type conductivity in antimony (Sb)-doped ZnO (ZnO:Sb) nanorods which have self-corrugated surfaces. The p-ZnO:Sb/n-ZnO nanorod diode shows good rectification characteristics, confirming that a p-n homojunction is formed in the ZnO nanorod diode. The low-temperature photoluminescence (PL) spectra of the ZnO:Sb nanorods reveal that the p-type conductivity in p-ZnO:Sb is related to the Sb(Zn)-2V(Zn) complex acceptors. Transmission electron microscopy (TEM) analysis of the ZnO:Sb nanorods also shows that the p-type conductivity is attributed to the Sb(Zn)-2V(Zn) complex acceptors which can be easily formed near the self-corrugated surface regions of ZnO:Sb nanorods. These results suggest that the Sb(Zn)-2V(Zn) complex acceptors are mainly responsible for the p-type conductivity in ZnO:Sb nanorods which have corrugated surfaces.

Concepts: Electron, Vacuum tube, Nanotechnology, Semiconductor, Transmission electron microscopy, Diode, N-type semiconductor, Riemann surface