Discover the most talked about and latest scientific content & concepts.

Concept: Vaccination


Smallpox holds a unique position in the history of medicine. It was the first disease for which a vaccine was developed and remains the only human disease eradicated by vaccination. Although there have been claims of smallpox in Egypt, India, and China dating back millennia [1-4], the timescale of emergence of the causative agent, variola virus (VARV), and how it evolved in the context of increasingly widespread immunization, have proven controversial [4-9]. In particular, some molecular-clock-based studies have suggested that key events in VARV evolution only occurred during the last two centuries [4-6] and hence in apparent conflict with anecdotal historical reports, although it is difficult to distinguish smallpox from other pustular rashes by description alone. To address these issues, we captured, sequenced, and reconstructed a draft genome of an ancient strain of VARV, sampled from a Lithuanian child mummy dating between 1643 and 1665 and close to the time of several documented European epidemics [1, 2, 10]. When compared to vaccinia virus, this archival strain contained the same pattern of gene degradation as 20(th) century VARVs, indicating that such loss of gene function had occurred before ca. 1650. Strikingly, the mummy sequence fell basal to all currently sequenced strains of VARV on phylogenetic trees. Molecular-clock analyses revealed a strong clock-like structure and that the timescale of smallpox evolution is more recent than often supposed, with the diversification of major viral lineages only occurring within the 18(th) and 19(th) centuries, concomitant with the development of modern vaccination.

Concepts: Poxviridae, Vaccine, Cowpox, Vaccinia, Virus, Infectious disease, Smallpox, Vaccination


Females have generally more robust immune responses than males for reasons that are not well-understood. Here we used a systems analysis to investigate these differences by analyzing the neutralizing antibody response to a trivalent inactivated seasonal influenza vaccine (TIV) and a large number of immune system components, including serum cytokines and chemokines, blood cell subset frequencies, genome-wide gene expression, and cellular responses to diverse in vitro stimuli, in 53 females and 34 males of different ages. We found elevated antibody responses to TIV and expression of inflammatory cytokines in the serum of females compared with males regardless of age. This inflammatory profile correlated with the levels of phosphorylated STAT3 proteins in monocytes but not with the serological response to the vaccine. In contrast, using a machine learning approach, we identified a cluster of genes involved in lipid biosynthesis and previously shown to be up-regulated by testosterone that correlated with poor virus-neutralizing activity in men. Moreover, men with elevated serum testosterone levels and associated gene signatures exhibited the lowest antibody responses to TIV. These results demonstrate a strong association between androgens and genes involved in lipid metabolism, suggesting that these could be important drivers of the differences in immune responses between males and females.

Concepts: Immunology, Organism, Protein, Bacteria, Vaccination, Vaccine, Antibody, Immune system


Autism spectrum disorder (ASD) is defined by standardized criteria of qualitative impairments in social interaction, qualitative impairments in communication, and restricted and stereotyped patterns of behavior, interests, and activities. A significant number of children diagnosed with ASD suffer a loss of previously-acquired skills, which is suggestive of neurodegeneration or a type of progressive encephalopathy with an etiological pathogenic basis occurring after birth. To date, the etiology of ASD remains under debate, however, many studies suggest toxicity, especially from mercury (Hg), in individuals diagnosed with an ASD. The present study evaluated concerns about the toxic effects of organic-Hg exposure from Thimerosal (49.55% Hg by weight) in childhood vaccines by conducting a two-phased (hypothesis generating/hypothesis testing) study with documented exposure to varying levels of Thimerosal from vaccinations.

Concepts: Toxicity, Mercury, Immune system, Greek loanwords, Autism spectrum, Autism, Vaccination, Vaccine


Could some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek’s disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit. Immunity elicited by direct vaccination or by maternal vaccination prolongs host survival but does not prevent infection, viral replication or transmission, thus extending the infectious periods of strains otherwise too lethal to persist. Our data show that anti-disease vaccines that do not prevent transmission can create conditions that promote the emergence of pathogen strains that cause more severe disease in unvaccinated hosts.

Concepts: Smallpox, Malaria, Natural selection, Microbiology, Infectious disease, Marek's disease, Vaccination, Immune system


Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.

Concepts: Evolution, Bacteria, Neonicotinoid, Vaccination, Honey bee, Insecticide, Immune system, Insect


Public trust in immunization is an increasingly important global health issue. Losses in confidence in vaccines and immunization programmes can lead to vaccine reluctance and refusal, risking disease outbreaks and challenging immunization goals in high- and low-income settings. National and international immunization stakeholders have called for better monitoring of vaccine confidence to identify emerging concerns before they evolve into vaccine confidence crises.

Concepts: Public health, State, Vaccine, Tuberculosis, Mercury, Immune system, Vaccination


Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals.

Concepts: Gene, Virology, Smallpox, Microbiology, Bacteria, Immune system, Vaccination, DNA


Variola Virus in a 300-Year-Old Mummy This letter describes a distant lineage of the variola virus (the agent of smallpox) that was identified in a mummy found buried in the Siberian permafrost.

Concepts: Smallpox, Biological warfare, Vaccination


Since it emerged in Brazil in May 2015, the mosquito-borne Zika virus (ZIKV) has raised global concern due to its association with a significant rise in the number of infants born with microcephaly and neurological disorders such as Guillain-Barré syndrome. We developed prototype subunit and adenoviral-based Zika vaccines encoding the extracellular portion of the ZIKV envelope gene (E) fused to the T4 fibritin foldon trimerization domain (Efl). The subunit vaccine was delivered intradermally through carboxymethyl cellulose microneedle array (MNA). The immunogenicity of these two vaccines, named Ad5.ZIKV-Efl and ZIKV-rEfl, was tested in C57BL/6 mice. Prime/boost immunization regimen was associated with induction of a ZIKV-specific antibody response, which provided neutralizing immunity. Moreover, protection was evaluated in seven-day-old pups after virulent ZIKV intraperitoneal challenge. Pups born to mice immunized with Ad5.ZIKV-Efl were all protected against lethal challenge infection without weight loss or neurological signs, while pups born to dams immunized with MNA-ZIKV-rEfl were partially protected (50%). No protection was seen in pups born to phosphate buffered saline-immunized mice. This study illustrates the preliminary efficacy of the E ZIKV antigen vaccination in controlling ZIKV infectivity, providing a promising candidate vaccine and antigen format for the prevention of Zika virus disease.

Concepts: Protein, Virology, Smallpox, Vaccine, Antibody, Immunology, Vaccination, Immune system


Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.

Concepts: Bacteria, Vaccination, B cell, Gene, Epitope, Antigen, Antibody, Immune system