SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Universe

436

Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”-it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade.

Concepts: Physics, Science, Knowledge, Computational genomics, Need, Universe, Astronomy, The Next Decade

355

The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present - as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.

Concepts: Galaxy, Supernova, Redshift, General relativity, Universe, Physical cosmology, Dark energy, Accelerating universe

346

Wormholes are fascinating cosmological objects that can connect two distant regions of the universe. Because of their intriguing nature, constructing a wormhole in a lab seems a formidable task. A theoretical proposal by Greenleaf et al. presented a strategy to build a wormhole for electromagnetic waves. Based on metamaterials, it could allow electromagnetic wave propagation between two points in space through an invisible tunnel. However, an actual realization has not been possible until now. Here we construct and experimentally demonstrate a magnetostatic wormhole. Using magnetic metamaterials and metasurfaces, our wormhole transfers the magnetic field from one point in space to another through a path that is magnetically undetectable. We experimentally show that the magnetic field from a source at one end of the wormhole appears at the other end as an isolated magnetic monopolar field, creating the illusion of a magnetic field propagating through a tunnel outside the 3D space. Practical applications of the results can be envisaged, including medical techniques based on magnetism.

Concepts: Electron, Electromagnetism, Magnetic field, Electromagnetic radiation, Maxwell's equations, Wave, Universe, Magnetostatics

278

Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration’s Kepler mission. We found 603 planets, including 10 that are Earth size ($$1-2\hbox{ \hspace{0.5em} }{R}_{\oplus }$$) and receive comparable levels of stellar energy to that of Earth ($$0.25-4\hbox{ \hspace{0.5em} }{F}_{\oplus }$$). We account for Kepler’s imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ∼200 d. Extrapolating, one finds $${5.7}_{-2.2}^{+1.7}$$% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

Concepts: Earth, Solar System, Planet, Jupiter, Universe, Terrestrial planet, Extrasolar planet, Orbital period

204

Although most organisms thermoregulate behaviorally, biologists still cannot easily predict whether mobile animals will thermoregulate in natural environments. Current models fail because they ignore how the spatial distribution of thermal resources constrains thermoregulatory performance over space and time. To overcome this limitation, we modeled the spatially explicit movements of animals constrained by access to thermal resources. Our models predict that ectotherms thermoregulate more accurately when thermal resources are dispersed throughout space than when these resources are clumped. This prediction was supported by thermoregulatory behaviors of lizards in outdoor arenas with known distributions of environmental temperatures. Further, simulations showed how the spatial structure of the landscape qualitatively affects responses of animals to climate. Biologists will need spatially explicit models to predict impacts of climate change on local scales.

Concepts: Time, Physics, General relativity, Natural environment, Space, Spacetime, Universe, Philosophy of space and time

194

Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

Concepts: Mathematics, Physics, Redshift, General relativity, Universe, Dark energy, Network theory, Accelerating universe

179

While humans are capable of mentally transcending the here and now, this faculty for mental time travel (MTT) is dependent upon an underlying cognitive representation of time. To this end, linguistic, cognitive and behavioral evidence has revealed that people understand abstract temporal constructs by mapping them to concrete spatial domains (e.g. past = backward, future = forward). However, very little research has investigated factors that may determine the topographical characteristics of these spatiotemporal maps. Guided by the imperative role of episodic content for retrospective and prospective thought (i.e., MTT), here we explored the possibility that the spatialization of time is influenced by the amount of episodic detail a temporal unit contains. In two experiments, participants mapped temporal events along mediolateral (Experiment 1) and anterioposterior (Experiment 2) spatial planes. Importantly, the temporal units varied in self-relevance as they pertained to temporally proximal or distal events in the participant’s own life, the life of a best friend or the life of an unfamiliar other. Converging evidence from both experiments revealed that the amount of space used to represent time varied as a function of target (self, best friend or unfamiliar other) and temporal distance. Specifically, self-time was represented as occupying more space than time pertaining to other targets, but only for temporally proximal events. These results demonstrate the malleability of space-time mapping and suggest that there is a self-specific conceptualization of time that may influence MTT as well as other temporally relevant cognitive phenomena.

Concepts: Time, Physics, General relativity, Space, Spacetime, Map, Universe, Gottfried Leibniz

171

The de-Sitter metric is a special form of the non-static Friedmann metric, and appears to be genuinely non-static since it describes the initial exponential expansion of the Big Bang universe. However, the de Sitter metric appears to be perfectly static in the Schwarzschild frame where the vacuum fluid is supposed to be in motion. Here we highlight the conflicts between the static and non-static versions of the de-Sitter metric from a physical perspective. In particular, while the “Principle of Energy Conservation” is honored in one case, the same is badly violated for the other. However, we offer a partial resolution of such conflicts by deriving the static de Sitter metric by solving the relevant field equations. It is seen that, it is the very special vacuum equation of state pressure = -density which results in the static form even when the vacuum fluid is supposed to be in motion.

Concepts: Big Bang, Redshift, General relativity, Cosmic microwave background radiation, Universe, Cosmological constant, Physical cosmology, Dark energy

137

The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods.

Concepts: Algorithm, Optics, Estimation, Proposal, Universe, Convergence, Slow, Slow Movement

93

Scientists have traditionally studied recreation in nature by conducting surveys at entrances to major attractions such as national parks. This method is expensive and provides limited spatial and temporal coverage. A new source of information is available from online social media websites such as flickr. Here, we test whether this source of “big data” can be used to approximate visitation rates. We use the locations of photographs in flickr to estimate visitation rates at 836 recreational sites around the world, and use information from the profiles of the photographers to derive travelers' origins. We compare these estimates to empirical data at each site and conclude that the crowd-sourced information can indeed serve as a reliable proxy for empirical visitation rates. This new approach offers opportunities to understand which elements of nature attract people to locations around the globe, and whether changes in ecosystems will alter visitation rates.

Concepts: Statistics, Mathematics, Science, Travel, Universe, Tourism, Social media, Recreation