SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Unfolded protein response

168

BACKGROUND: Stress of the endoplasmic reticulum (ER) leading to activation of the unfolded protein response (UPR) and alveolar epithelial cell (AEC) apoptosis may play a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Our objectives were to determine whether circulating caspase-cleaved cytokeratin-18 (cCK-18) is a marker of AEC apoptosis in IPF, define the relationship of cCK-18 with activation of the UPR, and assess its utility as a diagnostic biomarker. METHODS: IPF and normal lung tissues were stained with the antibody (M30) that specifically binds cCK-18. The relationship between markers of the UPR and cCK-18 was determined in AECs exposed in vitro to thapsigargin to induce ER stress. cCK-18 was measured in serum from subjects with IPF, hypersensitivity pneumonitis (HP), nonspecific interstitial pneumonia (NSIP), and control subjects. RESULTS: cCK-18 immunoreactivity was present in AECs of IPF lung, but not in control subjects. Markers of the UPR (phosphorylated IRE-1alpha and spliced XBP-1) were more highly expressed in IPF type II AECs than in normal type II AECs. Phosphorylated IRE-1alpha and cCK-18 increased following thapsigargin-induced ER stress. Serum cCK-18 level distinguished IPF from diseased and control subjects. Serum cCK-18 was not associated with disease severity or outcome. CONCLUSIONS: cCK-18 may be a marker of AEC apoptosis and UPR activation in patients with IPF. Circulating levels of cCK-18 are increased in patients with IPF and cCK-18 may be a useful diagnostic biomarker.

Concepts: Immune system, Pulmonology, Lung, Endoplasmic reticulum, Epithelium, Idiopathic pulmonary fibrosis, Pulmonary fibrosis, Unfolded protein response

28

Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ER stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin’s capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin’s tumoricidal effect. Mechanistically, prodigiosin engages the IRE1-JNK and PERK-eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death.

Concepts: Protein, Cell, Cancer, Breast cancer, Endoplasmic reticulum, Cytotoxicity, Breast, Unfolded protein response

28

IRE1α, the most conserved transducer of the unfolded protein response, plays critical roles in many biological processes and cell fate decisions. Reporting in Science, Upton et al. (2012) broadened our understanding of IRE1α as a cell-death executioner, showing that upon ER stress, IRE1α degrades microRNAs to promote translation of caspase-2.

Concepts: DNA, Proteins, Gene, Enzyme, Cell biology, Genetic code, Unfolded protein response, Sword

27

The process of atherosclerosis is affected by interactions among numerous biological pathways. Accumulating evidence shows that endoplasmic reticulum (ER) stress plays a crucial role in the development of atherosclerosis. Rho-kinase is an effector of small GTP-binding protein Rho, and has been implicated as an atherogenic factor. Previous studies demonstrated that fasudil, a specific Rho-kinase inhibitor, exerts a cardioprotective effect by downregulating ER stress signaling. However, the molecular link between ER stress and Rho-kinase in endothelial cells has not been elucidated. In this study, we investigated the mechanisms by which fasudil regulates endothelial inflammation during ER stress. Tunicamycin, an established ER stress inducer, increased vascular cellular adhesion molecule (VCAM)-1 expression in endothelial cells. Intriguingly, fasudil inhibited VCAM-1 induction. From a mechanistic stand point, fasudil inhibited expression of activating transcription factor (ATF)4 and subsequent C/EBP homologous protein (CHOP) induction by tunicamycin. Furthermore, fasudil attenuated tunicamycin-induced phophorylation of p38MAPK that is crucial for the atherogenic response during ER stress. These findings indicate that Rho-kinase regulates ER stress-mediated VCAM-1 induction by ATF4- and p38MAPK-dependent signaling pathways. Rho-kinase inhibition by fasudil would be an important therapeutic approach against atherosclerosis, in particular, under conditions of ER stress.

Concepts: Inflammation, DNA, Atherosclerosis, Endoplasmic reticulum, Cell adhesion molecule, Endothelium, Unfolded protein response, VCAM-1

25

Direct interaction of Chlamydiae with the endoplasmic reticulum (ER) is essential in intracellular productive infection. However, little is known about the interplay between Chlamydiae and the ER under cellular stress conditions that are observed in IFN-γ induced chlamydial persistent infection. ER stress responses are centrally regulated by the unfolded protein response (UPR) under the control of the ER chaperone BiP/GRP78 to maintain cellular homeostasis. In this study, we could show that the ER directly interacted with productive and IFN-γ induced persistent inclusions of Chlamydia pneumoniae (Cpn). BiP/GRP78 induction was observed in the early phase but not in the late phase of IFN-γ induced persistent infection. Enhanced BiP/GRP78 expression in the early phase of IFN-γ induced persistent Cpn infection was accompanied by phosphorylation of the eukaryotic initiation factor-2α (eIF2α) and down-regulation of the vesicle-associated membrane protein-associated protein B (VAPB). Loss of BiP/GRP78 function resulted in enhanced phosphorylation of eIF2α and increased host cell apoptosis. In contrast, enhanced BiP/GRP78 expression in IFN-γ induced persistent Cpn infection attenuated phosphorylation of eIF2α upon an exogenous ER stress inducer. In conclusion, ER-related BiP/GRP78 plays a key role to restore cells from stress conditions that are observed in the early phase of IFN-γ induced persistent infection.

Concepts: Cell, Bacteria, Cell membrane, Endoplasmic reticulum, Unfolded protein response, Chlamydiae, Chlamydophila pneumoniae, Chlamydiaceae

5

Mutations in PINK1 and PARKIN cause early-onset Parkinson’s disease (PD), thought to be due to mitochondrial toxicity. Here, we show that in Drosophila pink1 and parkin mutants, defective mitochondria also give rise to endoplasmic reticulum (ER) stress signalling, specifically to the activation of the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the unfolded protein response (UPR). We show that enhanced ER stress signalling in pink1 and parkin mutants is mediated by mitofusin bridges, which occur between defective mitochondria and the ER. Reducing mitofusin contacts with the ER is neuroprotective, through suppression of PERK signalling, while mitochondrial dysfunction remains unchanged. Further, both genetic inhibition of dPerk-dependent ER stress signalling and pharmacological inhibition using the PERK inhibitor GSK2606414 were neuroprotective in both pink1 and parkin mutants. We conclude that activation of ER stress by defective mitochondria is neurotoxic in pink1 and parkin flies and that the reduction of this signalling is neuroprotective, independently of defective mitochondria. A video abstract for this article is available online in the supplementary information.

Concepts: Cell, Adenosine triphosphate, Mitochondrion, Endoplasmic reticulum, Neurology, Parkinson's disease, Enzyme inhibitor, Unfolded protein response

3

The unfolded protein response (UPR) is a conserved homeostatic program that is activated by misfolded proteins in the lumen of the endoplasmic reticulum (ER). Recently, it became evident that aberrant lipid compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent in activating the UPR. The underlying molecular mechanism, however, remained unclear. We show that the most conserved transducer of ER stress, Ire1, uses an amphipathic helix (AH) to sense membrane aberrancies and control UPR activity. In vivo and in vitro experiments, together with molecular dynamics (MD) simulations, identify the physicochemical properties of the membrane environment that control Ire1 oligomerization. This work establishes the molecular mechanism of UPR activation by lipid bilayer stress.

Concepts: DNA, Proteins, Protein, Metabolism, Lipid, Membrane protein, Unfolded protein response, Lipid bilayer

3

Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), an essential adaptive intracellular pathway that relieves the stress. Although the UPR is an evolutionarily conserved and beneficial pathway, its chronic activation contributes to the pathogenesis of a wide variety of human disorders. The fidelity of UPR activation must thus be tightly regulated to prevent inappropriate signaling. The nonsense-mediated RNA decay (NMD) pathway has long been known to function in RNA quality control, rapidly degrading aberrant mRNAs, and has been suggested to regulate subsets of normal mRNAs. Here, we report that the NMD pathway regulates the UPR. NMD increases the threshold for triggering the UPR in vitro and in vivo, thereby preventing UPR activation in response to normally innocuous levels of ER stress. NMD also promotes the timely termination of the UPR. We demonstrate that NMD directly targets the mRNAs encoding several UPR components, including the highly conserved UPR sensor, IRE1α, whose NMD-dependent degradation partly underpins this process. Our work not only sheds light on UPR regulation, but demonstrates the physiological relevance of NMD’s ability to regulate normal mRNAs.

Concepts: Molecular biology, Endoplasmic reticulum, In vivo, In vitro, Regulation, Unfolded protein response, Conserved sequence, Conservation genetics

3

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor neurons. The mechanisms leading to motor neuron degeneration in ALS are unclear. However, there is evidence for involvement of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in ALS, notably in mutant SOD1 mediated models of ALS. Stress induced phosphorylation of the eIF2 alpha subunit by eukaryotic translation initiation factor 2-alpha kinase 3 Perk activates the UPR. Guanabenz is a centrally acting alpha2 adrenergic receptor agonist shown to interact with a regulatory subunit of the protein phosphatase, Pp1/Gadd34, and selectively disrupt the dephosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eif2alpha). Here we demonstrate that guanabenz is protective in fibroblasts expressing G93A mutant SOD1 when they are exposed to tunicamycin mediated ER stress. However, in contrast to other reports, guanabenz treatment accelerated ALS-like disease progression in a strain of mutant SOD1 transgenic ALS mice. This study highlights challenges of pharmacological interventions of cellular stress responses in whole animal models of ALS.

Concepts: Gene expression, Molecular biology, Endoplasmic reticulum, Protein biosynthesis, Amyotrophic lateral sclerosis, Unfolded protein response, Adrenergic receptor, SOD1

3

Protein S-nitrosylation modulates important cellular processes, including neurotransmission, vasodilation, proliferation, and apoptosis in various cell types. We have previously reported that protein disulfide isomerase (PDI) is S-nitrosylated in brains of patients with sporadic neurodegenerative diseases. This modification inhibits PDI enzymatic activity and consequently leads to the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) lumen. Here, we describe S-nitrosylation of additional ER pathways that affect the unfolded protein response (UPR) in cell-based models of Parkinson’s disease (PD). We demonstrate that nitric oxide (NO) can S-nitrosylate the ER stress sensors IRE1α and PERK. While S-nitrosylation of IRE1α inhibited its ribonuclease activity, S-nitrosylation of PERK activated its kinase activity and downstream phosphorylation/inactivation or eIF2α. Site-directed mutagenesis of IRE1α(Cys931) prevented S-nitrosylation and inhibition of its ribonuclease activity, indicating that Cys931 is the predominant site of S-nitrosylation. Importantly, cells overexpressing mutant IRE1α(C931S) were resistant to NO-induced damage. Our findings show that nitrosative stress leads to dysfunctional ER stress signaling, thus contributing to neuronal cell death.

Concepts: Proteins, Protein, Cell, Signal transduction, Enzyme, Golgi apparatus, Endoplasmic reticulum, Unfolded protein response