SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Turmeric

183

Curcumin is a polyphenolic compound isolated from the rhizomes of the plant Curcuma longa and shows intrinsic anti-cancer properties. Its medical use remains limited due to its extremely low water solubility and bioavailability. Addressing this problem, drug delivery systems accompanied by nanoparticle technology have emerged. The present study introduces a novel nanocarrier system, so-called CurcuEmulsomes, where curcumin is encapsulated inside the solid core of emulsomes.

Concepts: Present, Pharmacology, Medicine, Solubility, Turmeric

171

Small molecules with antioxidative properties have been implicated in amyloid disorders. Curcumin is the active ingredient present in turmeric and known for several biological and medicinal effects. Adequate evidence substantiates the importance of curcumin in Alzheimer’s disease and recent evidence suggests its role in Prion and Parkinson’s disease. However, contradictory effects have been suggested for Huntington’s disease. This difference provided a compelling reason to investigate the effect of curcumin on glutamine-rich (Q-rich) and non-glutamine-rich (non Q-rich) amyloid aggregates in the well established yeast model system. Curcumin significantly inhibited the formation of htt72Q-GFP (a Q-rich) and Het-s-GFP (a non Q-rich) aggregates in yeast. We show that curcumin prevents htt72Q-GFP aggregation by down regulating Vps36, a component of the ESCRT-II (Endosomal sorting complex required for transport). Moreover, curcumin disrupted the htt72Q-GFP aggregates that were pre-formed in yeast and cured the yeast prion, [PSI(+)].

Concepts: Alzheimer's disease, Model organism, Prion, Neurodegenerative disorders, Parkinson's disease, Dementia, Turmeric, Curcumin

167

BACKGROUND: A specific and sensitive UPLC-qTOF-MS/MS method has been developed for the simultaneous determination of curcuminoids. These Curcuminoids comprises of curcumin, a principal curcuminoid and other two namely, demethoxycurcumin, and bisdemethoxycurcumin obtained from rhizomes of Curcuma longa an ancient Indian curry spice turmeric, family (Zingiberaceae), METHODS: These analytes were separated on a reverse phase C18 column by using a mobile phase of acetonitrile: 5% acetonitrile in water with 0.07% acetic acid (75:25 v/v), flow rate of 100 muL/min was maintained. The qTOF-MS was operated under multiple reaction monitoring (MRM) mode using electro-spray ionization (ESI) technique with positive ion polarity. The major product ions in the positive mode for curcuminoids were at m/z 369.1066, 339.1023 and 309.0214 respectively. The recovery of the analytes from mouse plasma was optimized using solid phase extraction technique. RESULTS: The total run time was 5 min and the peaks of the compounds, bisdemethoxycurcumin, demethoxycurcumin and curcumin occurred at 2.06, 2.23 and 2.40 min respectively. The calibration curves of bisdemethoxycurcumin, demethoxycurcumin and curcumin were linear over the concentration range of 2–1000 ng/mL (r2, 0.9951), 2–1000 ng/mL (r2, 0.9970) and 2-1000 ng/mL (r2, 0.9906) respectively.Intra-assay and inter-assay accuracy in terms of% bias for curcumin was in between -7.95to +6.21, and -7.03 to + 6.34; for demethoxycurcumin was -6.72 to +6.34, and -7.86 to +6.74 and for bisdesmetoxycurcumin was -8.23 to +6.37 and -8.47 to +7.81. The lower limit of quantitation for curcumin, demethoxycurcumin and bisdemethoxycurcumin was 2.0 ng/mL. Analytes were stable under various conditions (in autosampler, during freeze-thaw, at room temperature, and under deep-freeze conditions). This validated method was used during pharmacokinetic studies of curcumin in the mouse plasma. CONCLUSIONS: A specific, accurate and precise UPLC-qTOF-MS/MS method for the determination of curcumin, demethoxycurcumin and bisdemethoxycurcumin both individually and simultaneously was optimized.

Concepts: Analytical chemistry, Ion, Mouse, Curcuma, Turmeric, Curcumin, Zingiberaceae, Curry

52

Otitis media (OM) is the most common childhood bacterial infection, and leading cause of conductive hearing loss. Nontypeable Haemophilus influenzae (NTHi) is a major bacterial pathogen for OM. OM characterized by the presence of overactive inflammatory responses is due to the aberrant production of inflammatory mediators including C-X-C motif chemokine ligand 5 (CXCL5). The molecular mechanism underlying induction of CXCL5 by NTHi is unknown. Here we show that NTHi up-regulates CXCL5 expression by activating IKKβ-IκBα and p38 MAPK pathways via NF-κB nuclear translocation-dependent and -independent mechanism in middle ear epithelial cells. Current therapies for OM are ineffective due to the emergence of antibiotic-resistant NTHi strains and risk of side effects with prolonged use of immunosuppressant drugs. In this study, we show that curcumin, derived from Curcuma longa plant, long known for its medicinal properties, inhibited NTHi-induced CXCL5 expression in vitro and in vivo. Curcumin suppressed CXCL5 expression by direct inhibition of IKKβ phosphorylation, and inhibition of p38 MAPK via induction of negative regulator MKP-1. Thus, identification of curcumin as a potential therapeutic for treating OM is of particular translational significance due to the attractiveness of targeting overactive inflammation without significant adverse effects.

Concepts: Immune system, Inflammation, Bacteria, Infection, Chemokine, Otitis media, Haemophilus influenzae, Turmeric

38

Extensive research over the past half century has shown that curcumin (diferuloylmethane), a component of the golden spice turmeric (Curcuma longa), can modulate multiple cell signaling pathways. Extensive clinical trials over the past quarter century have addressed the pharmacokinetics, safety, and efficacy of this nutraceutical against numerous diseases in humans. Some promising effects have been observed in patients with various pro-inflammatory diseases including cancer, cardiovascular disease, arthritis, uveitis, ulcerative proctitis, Crohn’s disease, ulcerative colitis, irritable bowel disease, tropical pancreatitis, peptic ulcer, gastric ulcer, idiopathic orbital inflammatory pseudotumor, oral lichen planus, gastric inflammation, vitiligo, psoriasis, acute coronary syndrome, atherosclerosis, diabetes, diabetic nephropathy, diabetic microangiopathy, lupus nephritis, renal conditions, acquired immunodeficiency syndrome, β-thalassemia, biliary dyskinesia, Dejerine-Sottas disease, cholecystitis, and chronic bacterial prostatitis. Curcumin has also shown protection against hepatic conditions, chronic arsenic exposure, and alcohol intoxication. Dose-escalating studies have indicated the safety of curcumin at doses as high as 12 g/day over 3 months. Curcumin’s pleiotropic activities emanate from its ability to modulate numerous signaling molecules such as pro-inflammatory cytokines, apoptotic proteins, NF-κB, cyclooxygenase-2, 5-LOX, STAT3, C-reactive protein, prostaglandin E(2), prostate-specific antigen, adhesion molecules, phosphorylase kinase, transforming growth factor-β, triglyceride, ET-1, creatinine, HO-1, AST, and ALT in human participants. In clinical trials, curcumin has been used either alone or in combination with other agents. Various formulations of curcumin, including nanoparticles, liposomal encapsulation, emulsions, capsules, tablets, and powder, have been examined. In this review, we discuss in detail the various human diseases in which the effect of curcumin has been investigated.

Concepts: AIDS, Immune system, Cancer, Ulcerative colitis, Abdominal pain, Gastroenterology, Peptic ulcer, Turmeric

29

Because tumor necrosis factors (TNFs) are major mediators of inflammation and inflammation-related diseases, the United States Food and Drug Administration (FDA) has approved blockers of the cytokine, TNF-α, which include chimeric TNF antibody (Infliximab), humanized TNF-α antibody (Humira), and soluble TNF receptor-II (Enbrel). TNF blockers are now being used for the treatment of osteoarthritis, inflammatory bowel disease, psoriasis, and ankylosis at a total cumulative market value of more than $20 billion/year. Besides being expensive ($15,000-20,000/person/year), these drugs must be injected and have enough adverse effects to be given a black label warning by the FDA. In the current report, we describe an alternative, curcumin (diferuloylmethane), a component of turmeric (Curcuma longa) that is very inexpensive, orally bioavailable, and highly safe in humans, yet can block TNF-α action and production in in vitro models, in animal models, and in humans. In addition, we provide evidence for curcumin’s activities against all of the diseases for which TNF blockers are being used. Mechanisms by which curcumin inhibits the production and the cell signaling pathways activated by this cytokine are also discussed. With health care costs and safety being major issues today, this golden spice may help provide the solution.

Concepts: Immune system, Inflammation, Rheumatoid arthritis, Crohn's disease, Tumor necrosis factor-alpha, Psoriasis, Turmeric, Curcumin

28

Members of the family Zingiberaceae including turmeric, ginger, Javanese ginger, and galangal have been used for centuries in traditional medicine. Preclinical studies of Zingiberaceae extracts have shown analgesic properties. This study aims to systematically review and meta-analyze whether extracts from Zingiberaceae are clinically effective hypoalgesic agents.

Concepts: Systematic review, Analgesic, Meta-analysis, Ginger, Zingiberales, Turmeric, Zingiberaceae

28

Context: Curcumin is a yellow-orange polyphenol derived from turmeric [Curcuma longa L. (Zingiberaceaerhizomes)]. Turmeric is a main ingredient of Indian, Persian, and Thai dishes. Extensive studies within the last half a century have demonstrated the protective action of curcumin in many disorders of the body. Objective: This study evaluated the protective effect of curcumin on dexamethasone-induced spermatogenesis defects in mice. Materials and methods: Thirty-two NMRI mice were randomly divided into 4 groups. The first (control) group received 1 mL/day of distilled water by intraperitoneal (i.p.) injection for 7 days. The second group received 200 mg/kg/day of curcumin (Cur) for 10 days. Third group received 7 mg/kg/day of dexamethasone (Dex) for 7 days. Forth group received 200 mg/kg of curcumin for 10 days after dexamethasone treatment. Testicular histopathology, morphometric analysis, head sperm counting, and immunohistochemistry assessments were performed for evaluation of the dexamethasone and curcumin effects. Results: Expression of Bcl-2 was significantly increased in the curcumin + dexamethasone group compared with dexamethasone-treated animals (p < 0.05). Dexamethasone induced spermatogenesis defects including epithelial vacuolizations, sloughing of germ cells, reduction of seminiferous tubule diameter, reduction in the number of sperm heads and significant maturation arrest (p < 0.001). Curcumin + dexamethasone treatment significantly prevented these changes (p < 0.05). Discussion and conclusion: The results of this study demonstrate that curcumin increases the expression of Bcl-2 protein, an important anti-apoptotic factor, and improves the spermatogenesis defects in dexamethasone treated mice. Curcumin has a potent protective effect against the testicular toxicity and might be clinically useful.

Concepts: Gene, Meiosis, Curcuma, Dexamethasone, Turmeric, Curcumin, Zingiberaceae, Thai cuisine

28

Aflatoxins are highly toxic, mutagenic, teratogenic and carcinogenic mycotoxins. Consumption of aflatoxin-contaminated food and commodities poses serious hazards to the health of humans and animals. Turmeric, Curcuma longa L., is a native plant of Southeast Asia and has antimicrobial, antioxidant and antifungal properties. This paper reports the antiaflatoxigenic activities of the essential oil of C. longa and curcumin. The medium tests were prepared with the oil of C. longa, and the curcumin standard at concentrations varied from 0.01% to 5.0%. All doses of the essential oil of the plant and the curcumin standard interfered with mycotoxin production. Both the essential oil and curcumin significantly inhibited the production of aflatoxins; the 0.5% level had a greater than 96% inhibitory effect. The levels of aflatoxin B(1) (AFB(1)) production were 1.0 and 42.7 μg/mL, respectively, for the samples treated with the essential oil of C. longa L. and curcumin at a concentration of 0.5%.

Concepts: Fungus, Aspergillus flavus, Aflatoxin, Mycotoxin, Aspergillus, Curcuma, Turmeric, Curcumin

28

Dehydrozingerone (1) is a pungent constituent present in the rhizomes of ginger (Zingiber officinale) and belongs structurally to the vanillyl ketone class. It is a representative of half the chemical structure of curcumin (2), which is an antioxidative yellow pigment obtained from the rhizomes of turmeric (Curcuma longa). Numerous studies have suggested that 2 is a promising phytochemical for the inhibition of malignant tumors, including colon cancer. On the other hand, there have been few studies on the potential antineoplastic properties of 1, and its mode of action based on a molecular mechanism is little known. Therefore, the antiproliferative effects of 1 were evaluated against HT-29 human colon cancer cells, and it was found that 1 dose-dependently inhibited growth at the G2/M phase with up-regulation of p21. Dehydrozingerone additionally led to the accumulation of intracellular ROS, although most radical scavengers could not clearly repress the cell-cycle arrest at the G2/M phase. Furthermore, two synthetic isomers of 1 (iso-dehydrozingerone, 3, and ortho-dehydrozingerone, 4) were also examined. On comparing of their activities, accumulation of intracellular ROS was found to be interrelated with growth-inhibitory effects. These results suggest that analogues of 1 may be potential chemotherapeutic agents for colon cancer.

Concepts: Cancer, Oncology, Chemotherapy, Colorectal cancer, Cell cycle, Ginger, Turmeric, Zingiberaceae