Discover the most talked about and latest scientific content & concepts.

Concept: Tuna


The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1-15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts.

Concepts: Heart, Fish, Petroleum, Polycyclic aromatic hydrocarbon, Tuna, Thunnus, Scombridae, Yellowfin tuna


Spatial variation in growth is a common feature of demersal fish populations which often exist as discrete adult sub-populations linked by a pelagic larval stage. However, it remains unclear whether variation in growth occurs at similar spatial scales for populations of highly migratory pelagic species, such as tuna. We examined spatial variation in growth of albacore Thunnus alalunga across 90° of longitude in the South Pacific Ocean from the east coast of Australia to the Pitcairn Islands. Using length-at-age data from a validated ageing method we found evidence for significant variation in length-at-age and growth parameters (L(∞) and k) between sexes and across longitudes. Growth trajectories were similar between sexes up until four years of age, after which the length-at-age for males was, on average, greater than that for females. Males reached an average maximum size more than 8 cm larger than females. Length-at-age and growth parameters were consistently greater at more easterly longitudes than at westerly longitudes for both females and males. Our results provide strong evidence that finer spatial structure exists within the South Pacific albacore stock and raises the question of whether the scale of their “highly migratory” nature should be re-assessed. Future stock assessment models for South Pacific albacore should consider sex-specific growth curves and spatial variation in growth within the stock.

Concepts: Fish, New Zealand, Pacific Ocean, Polynesia, Tuna, Thunnus, Scombridae, Yellowfin tuna


Capture in global pelagic longline fisheries threatens the viability of some seabird populations. The Hawaii longline tuna fishery annually catches hundreds of seabirds, primarily Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses. Since seabird regulations were introduced in 2001, the seabird catch rate has declined 74%. However, over the past decade, seabird catch levels significantly increased due to significant increasing trends in both effort and nominal seabird catch rates. We modelled observer data using a spatio-temporal generalized additive mixed model with zero-inflated Poisson likelihood to determine the significance of the effect of various risk factors on the seabird catch rate. The seabird catch rate significantly increased as annual mean multivariate ENSO index values increased, suggesting that decreasing ocean productivity observed in recent years in the central north Pacific may have contributed to the increasing trend in nominal seabird catch rate. A significant increasing trend in number of albatrosses attending vessels, possibly linked to declining regional ocean productivity and increasing absolute abundance of black-footed albatrosses, may also have contributed to the increasing nominal seabird catch rate. Largest opportunities for reductions are through augmented efficacy of seabird bycatch mitigation north of 23° N where mitigation methods are required and during setting instead of during hauling. Both side vs. stern setting, and blue-dyed vs. untreated bait significantly reduced the seabird catch rate. Of two options for meeting regulatory requirements, side setting had a significantly lower seabird catch rate than blue-dyed bait. There was significant spatio-temporal and seasonal variation in the risk of seabird capture with highest catch rates in April and May and to the northwest of the main Hawaiian Islands.

Concepts: Albatross, Seabird, Hawaiian Islands, Procellariiformes, Tuna, Bycatch, Laysan Albatross, Longline fishing


Radioactive isotopes originating from the damaged Fukushima nuclear reactor in Japan following the earthquake and tsunami in March 2011 were found in resident marine animals and in migratory Pacific bluefin tuna (PBFT). Publication of this information resulted in a worldwide response that caused public anxiety and concern, although PBFT captured off California in August 2011 contained activity concentrations below those from naturally occurring radionuclides. To link the radioactivity to possible health impairments, we calculated doses, attributable to the Fukushima-derived and the naturally occurring radionuclides, to both the marine biota and human fish consumers. We showed that doses in all cases were dominated by the naturally occurring alpha-emitter (210)Po and that Fukushima-derived doses were three to four orders of magnitude below (210)Po-derived doses. Doses to marine biota were about two orders of magnitude below the lowest benchmark protection level proposed for ecosystems (10 µGy⋅h(-1)). The additional dose from Fukushima radionuclides to humans consuming tainted PBFT in the United States was calculated to be 0.9 and 4.7 µSv for average consumers and subsistence fishermen, respectively. Such doses are comparable to, or less than, the dose all humans routinely obtain from naturally occurring radionuclides in many food items, medical treatments, air travel, or other background sources. Although uncertainties remain regarding the assessment of cancer risk at low doses of ionizing radiation to humans, the dose received from PBFT consumption by subsistence fishermen can be estimated to result in two additional fatal cancer cases per 10,000,000 similarly exposed people.

Concepts: Ionizing radiation, Radioactive decay, Gamma ray, Radiation poisoning, Radioactive contamination, Radioactivity, Radionuclide, Tuna


Fish are a source of persistent organic pollutants (POPs) in the human diet. Although species, trophic level, and means of production are typically considered in predicting fish pollutant load, and thus recommendations of consumption, capture location is usually not accounted for.

Concepts: Persistent organic pollutant, Persistent organic pollutants, Biomagnification, Tuna, Yellowfin tuna


Tunas are apex predators in marine food webs that can accumulate mercury (Hg) to high concentrations and provide more Hg (∼40%) to the U.S population than any other source. We measured Hg concentrations in 1292 Atlantic bluefin tuna (ABFT, Thunnus thynnus) captured in the Northwest Atlantic from 2004 to 2012. ABFT Hg concentrations and variability increased nonlinearly with length, weight, and age, ranging from 0.25 to 3.15 mg kg(-1), and declined significantly at a rate of 0.018 ± 0.003 mg kg(-1) per year or 19% over an 8-year period from the 1990s to the early 2000s. Notably, this decrease parallels comparably reduced anthropogenic Hg emission rates in North America and North Atlantic atmospheric Hg(0) concentrations during this period, suggesting that recent efforts to decrease atmospheric Hg loading have rapidly propagated up marine food webs to a commercially important species. This is the first evidence to suggest that emission reduction efforts have resulted in lower Hg concentrations in large, long-lived fish.

Concepts: United States, Atlantic Ocean, Europe, Gulf of Mexico, Tuna, Thunnus, Scombridae, Northern bluefin tuna


Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors.

Concepts: Atlantic Ocean, Europe, Caribbean Sea, Gulf of Mexico, Tuna, Thunnus, Scombridae, Northern bluefin tuna


Despite long evolutionary separations, several sharks and tunas share the ability to maintain slow-twitch, aerobic red muscle (RM) warmer than ambient water. Proximate causes of RM endothermy are well understood, but ultimate causes are unclear. Two advantages often proposed are thermal niche expansion and elevated cruising speeds. The thermal niche hypothesis is generally supported, because fishes with RM endothermy often exhibit greater tolerance to broad temperature ranges. In contrast, whether fishes with RM endothermy cruise faster, and achieve any ecological benefits from doing so, remains unclear. Here, we compiled data recorded by modern animal-tracking tools for a variety of free-swimming marine vertebrates. Using phylogenetically informed allometry, we show that both cruising speeds and maximum annual migration ranges of fishes with RM endothermy are 2-3 times greater than fishes without it, and comparable to nonfish endotherms (i.e., penguins and marine mammals). The estimated cost of transport of fishes with RM endothermy is twice that of fishes without it. We suggest that the high energetic cost of RM endothermy in fishes is offset by the benefit of elevated cruising speeds, which not only increase prey encounter rates, but also enable larger-scale annual migrations and potentially greater access to seasonally available resources.

Concepts: Evolution, Biology, Phylogenetic comparative methods, Shark, Tuna, Warm-blooded, Proximate and ultimate causation, Proximate cause


The Fukushima Daiichi power station released several radionuclides into the Pacific following the March 2011 earthquake & tsunami. A total of 26 Pacific albacore (Thunnus alalunga) caught off the Pacific Northwest US coast between 2008 and 2012 were analyzed for 137Cs and Fukushima-attributed 134Cs. Both 2011 (2 of 2) and several 2012 (10 of 17) edible tissue samples exhibited increased activity concentrations of 137Cs (234 - 824 mBq/kg wet weight) and 134Cs (18.2 - 356 mBq/kg wet weight). The remaining 2012 samples and all pre-Fukushima (2008-2009) samples possessed lower 137Cs activity concentrations (103 - 272 mBq/kg wet weight) with no detectable 134Cs activity. Age, as indicated by fork length, was a strong predictor for both the presence and concentration of 134Cs (p < 0.001). Notably, many migration-aged fish did not exhibit any 134Cs, suggesting they had not recently migrated near Japan. None of the tested samples would represent a significant change in annual radiation dose if consumed by humans.

Concepts: Japan, Pacific Ocean, Pacific Northwest, Tsunami, Tuna, Thunnus, Scombridae, Portland, Oregon


For ram-gill ventilators such as tunas and mackerels (family Scombridae) and billfishes (families Istiophoridae, Xiphiidae), fusions binding the gill lamellae and filaments prevent gill deformation by a fast and continuous ventilatory stream. This study examines the gills from 28 scombrid and seven billfish species in order to determine how factors such as body size, swimming speed, and the degree of dependence upon ram ventilation influence the site of occurrence and type of fusions. In the family Scombridae there is a progressive increase in the reliance on ram ventilation that correlates with the elaboration of gill fusions. This ranges from mackerels (tribe Scombrini), which only utilize ram ventilation at fast cruising speeds and lack gill fusions, to tunas (tribe Thunnini) of the genus Thunnus, which are obligate ram ventilators and have two distinct fusion types (one binding the gill lamellae and a second connecting the gill filaments). The billfishes appear to have independently evolved gill fusions that rival those of tunas in terms of structural complexity. Examination of a wide range of body sizes for some scombrids and billfishes shows that gill fusions begin to develop at lengths as small as 2.0 cm fork length. In addition to securing the spatial configuration of the gill sieve, gill fusions also appear to increase branchial resistance to slow the high-speed current produced by ram ventilation to distribute flow evenly and optimally to the respiratory exchange surfaces. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.

Concepts: Nuclear fusion, Gill, Typeface, Shark, Tuna, Thunnus, Scombridae, Billfish