Discover the most talked about and latest scientific content & concepts.

Concept: Tumor suppressor gene


Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)-Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.

Concepts: Proteins, Cancer, Oncology, Signal transduction, Adenosine triphosphate, Cytoskeleton, Tumor suppressor gene, AKT


BACKGROUND: Cancer outlier profile analysis (COPA) has proven to be an effective approach to analyzing cancer expression data, leading to the discovery of the TMPRSS2 and ETS family gene fusion events in prostate cancer. However, the original COPA algorithm did not identify down-regulated outliers, and the currently available R package implementing the method is similarly restricted to the analysis of over-expressed outliers. Here we present a modified outlier detection method, mCOPA, which contains refinements to the outlier-detection algorithm, identifies both over- and under-expressed outliers, is freely available, and can be applied to any expression dataset. RESULTS: We compare our method to other feature-selection approaches, and demonstrate that mCOPA frequently selects more-informative features than do differential expression or variance-based feature selection approaches, and is able to recover observed clinical subtypes more consistently. We demonstrate the application of mCOPA to prostate cancer expression data, and explore the use of outliers in clustering, pathway analysis, and the identification of tumour suppressors. We analyse the under-expressed outliers to identify known and novel prostate cancer tumour suppressor genes, validating these against data in Oncomine and the Cancer Gene Index. We also demonstrate how a combination of outlier analysis and pathway analysis can identify molecular mechanisms disrupted in individual tumours. CONCLUSIONS: We demonstrate that mCOPA offers advantages, compared to differential expression or variance, in selecting outlier features, and that the features so selected are better able to assign samples to clinically annotated subtypes. Further, we show that the biology explored by outlier analysis differs from that uncovered in differential expression or variance analysis. mCOPA is an important new tool for the exploration of cancer datasets and the discovery of new cancer subtypes, and can be combined with pathway and functional analysis approaches to discover mechanisms underpinning heterogeneity in cancers.

Concepts: Gene expression, Cancer, Oncology, Prostate cancer, Tumor, Tumor suppressor gene, Normal distribution, Outlier


The tumor suppressor genes MGMT and DAPK1 become methylated in several cancers including diffuse large B-cell lymphoma (DLBCL). However, allelic methylation patterns have not been investigated in DLBCL. We developed a fast and cost-efficient method for the analysis of allelic methylation based on pyrosequencing of methylation specific PCR (MSP) products including a SNP. Allelic methylation patterns were reliably analyzed in standards of known allelic methylation status even when diluted in unmethylated DNA to below 1% methylation. When studying 148 DLBCL patients MGMT and DAPK1 methylation was observed in 19% and 89%, respectively, and among methylated and heterozygous patients 29% and 55%, respectively, were biallelically methylated. An association between the T-allele of the rs16906252 SNP and MGMT methylation was observed (p-value = 0.04), and DAPK1 methylation of the A-allele was associated with shorter overall survival (p-value = 0.006). In future cancer research allelic MSP-pyrosequencing may be used to study a wide range of other loci.

Concepts: DNA, Cancer, Types of cancer, Lymphoma, DNA methylation, Methylation, Tumor suppressor gene, Diffuse large B cell lymphoma


The most aggressive of four medulloblastoma (MB) subgroups are cMyc-driven group 3 (G3) tumors, some of which overexpress EZH2, the histone H3K27 mono-, di-, and trimethylase of polycomb-repressive complex 2. Ezh2 has a context-dependent role in different cancers as an oncogene or tumor suppressor and retards tumor progression in a mouse model of G3 MB. Engineered deletions of Ezh2 in G3 MBs by gene editing nucleases accelerated tumorigenesis, whereas Ezh2 re-expression reversed attendant histone modifications and slowed tumor progression. Candidate oncogenic drivers suppressed by Ezh2 included Gfi1, a proto-oncogene frequently activated in human G3 MBs. Gfi1 disruption antagonized the tumor-promoting effects of Ezh2 loss; conversely, Gfi1 overexpression collaborated with Myc to bypass effects of Trp53 inactivation in driving MB progression in primary cerebellar neuronal progenitors. Although negative regulation of Gfi1 by Ezh2 may restrain MB development, Gfi1 activation can bypass these effects.

Concepts: DNA, Gene, Gene expression, Cancer, Oncology, Brain tumor, Oncogene, Tumor suppressor gene


Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

Concepts: Cancer, Oncology, Apoptosis, Brain tumor, P53, Proteomics, Tumor suppressor gene, Programmed cell death


Autism spectrum disorder (ASD) is one phenotypic aspect of many monogenic, hereditary cancer syndromes. Pleiotropic effects of cancer genes on the autism phenotype could lead to repurposing of oncology medications to treat this increasingly prevalent neurodevelopmental condition for which there is currently no treatment. To explore this hypothesis we sought to discover whether autistic patients more often have rare coding, single-nucleotide variants within tumor suppressor and oncogenes and whether autistic patients are more often diagnosed with neoplasms. Exome-sequencing data from the ARRA Autism Sequencing Collaboration was compared to that of a control cohort from the Exome Variant Server database revealing that rare, coding variants within oncogenes were enriched for in the ARRA ASD cohort (p<1.0x10-8). In contrast, variants were not significantly enriched in tumor suppressor genes. Phenotypically, children and adults with ASD exhibited a protective effect against cancer, with a frequency of 1.3% vs. 3.9% (p<0.001), but the protective effect decreased with age. The odds ratio of neoplasm for those with ASD relative to controls was 0.06 (95% CI: 0.02, 0.19; p<0.0001) in the 0 to 14 age group; 0.35 (95% CI: 0.14, 0.87; p = 0.024) in the 15 to 29 age group; 0.41 (95% CI: 0.15, 1.17; p = 0.095) in the 30 to 54 age group; and 0.49 (95% CI: 0.14, 1.74; p = 0.267) in those 55 and older. Both males and females demonstrated the protective effect. These findings suggest that defects in cellular proliferation, and potentially senescence, might influence both autism and neoplasm, and already approved drugs targeting oncogenic pathways might also have therapeutic value for treating autism.

Concepts: Cancer, Oncology, Tumor, Autism, Oncogene, Tumor suppressor gene, Asperger syndrome, Autism spectrum


Triple-negative breast cancer (TNBC) has the worst prognosis of any breast cancer subtype. To better understand the genetic forces driving TNBC, we performed a transposon mutagenesis screen in a phosphatase and tensin homolog (Pten) mutant mice and identified 12 candidate trunk drivers and a much larger number of progression genes. Validation studies identified eight TNBC tumor suppressor genes, including the GATA-like transcriptional repressor TRPS1 Down-regulation of TRPS1 in TNBC cells promoted epithelial-to-mesenchymal transition (EMT) by deregulating multiple EMT pathway genes, in addition to increasing the expression of SERPINE1 and SERPINB2 and the subsequent migration, invasion, and metastasis of tumor cells. Transposon mutagenesis has thus provided a better understanding of the genetic forces driving TNBC and discovered genes with potential clinical importance in TNBC.

Concepts: DNA, Gene, Gene expression, Cancer, Breast cancer, Mutation, Oncology, Tumor suppressor gene


Herein we report a proof-of-principle study illustrating a novel dog-human comparison strategy that addresses a central aim of cancer research, namely cancer driver-passenger distinction. We previously demonstrated that sporadic canine colorectal cancers (CRCs) share similar molecular pathogenesis mechanisms as their human counterparts. In this study, we compared the genome-wide copy number abnormalities between 29 human and 10 canine sporadic CRCs. This led to the identification of 73 driver candidate genes (DCGs), altered in both species, and with 27 from the whole genome and 46 from dog-human genomic rearrangement breakpoint (GRB) regions, as well as 38 passenger candidate genes (PCGs), altered in humans only and located in GRB regions. We noted that DCGs significantly differ from PCGs in every analysis conducted to assess their cancer relevance and biological functions. Importantly, although PCGs are not enriched in any specific functions, DCGs possess significantly enhanced functionality closely associated with cell proliferation and death regulation, as well as with epithelial cell apicobasal polarity establishment/maintenance. These observations support the notion that, in sporadic CRCs of both species, cell polarity genes not only contribute in preventing cancer cell invasion and spreading, but also likely serve as tumor suppressors by modulating cell growth. This pilot study validates our novel strategy and has uncovered four new potential cell polarity and colorectal tumor suppressor genes (RASA3, NUPL1, DENND5A and AVL9). Expansion of this study would make more driver-passenger distinctions for cancers with large genomic amplifications or deletions, and address key questions regarding the relationship between cancer pathogenesis and epithelial cell polarity control in mammals.Oncogene advance online publication, 18 February 2013; doi:10.1038/onc.2013.17.

Concepts: Gene, Cancer, Oncology, Cell division, Colorectal cancer, Oncogene, Tumor suppressor gene, Li-Fraumeni syndrome


This study aims to investigate the impacts of CO2 pneumoperitoneum on the growth of ovarian cancer in nude mice and the expression of tumor metastasis suppressor gene (NM23-H1) and matrix metalloproteinase -2 (MMP-2) in SKOV-3 ovarian cancer cell line cancer tissue.

Concepts: Gene, Gene expression, Cell, Cancer, Metastasis, Oncology, BRCA2, Tumor suppressor gene


Sporadic breast cancer is frequently associated with aberrant DNA methylation patterns that are reversible and responsive to environmental factors, including diet. In the present study, we investigated the effects of sulforaphane (SFN), a phytochemical from cruciferous vegetables, on the methylation and expression of PTEN and RARbeta2 tumour suppressor genes as well as on the expression of regulators of DNA methylation reaction, DNMT1, p53, and p21, in MCF-7 and MDA-MB-231 human breast cancer cells with different invasive potential. We also evaluate the role of SFN epigenetic effects in support of therapy with clofarabine (ClF) that was recently shown to modulate the epigenome as well.

Concepts: DNA, Gene expression, Cancer, Breast cancer, Histone, Epigenetics, DNA methylation, Tumor suppressor gene