SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Tumor necrosis factor-alpha

346

This investigation examined the impact of Montmorency tart cherry concentrate (MC) on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16) were divided into equal groups and consumed 30 mL of MC or placebo (PLA), twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), interleukin-1-beta (IL-1-β), high-sensitivity C-reactive protein (hsCRP) and creatine kinase (CK) were conducted. LOOH (p < 0.01), IL-6 (p < 0.05) and hsCRP (p < 0.05) responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario's where back-to-back performances are required.

Concepts: Inflammation, Cycling, C-reactive protein, Tumor necrosis factor-alpha, Road bicycle racing, Cherries, Montmorency cherry, Road cycling

303

Rheumatoid arthritis (RA) is a heterogeneous, prevalent, chronic autoimmune disease characterized by painful swollen joints and significant disabilities. Symptomatic relief can be achieved in up to 50% of patients using biological agents that inhibit tumor necrosis factor (TNF) or other mechanisms of action, but there are no universally effective therapies. Recent advances in basic and preclinical science reveal that reflex neural circuits inhibit the production of cytokines and inflammation in animal models. One well-characterized cytokine-inhibiting mechanism, termed the “inflammatory reflex,” is dependent upon vagus nerve signals that inhibit cytokine production and attenuate experimental arthritis severity in mice and rats. It previously was unknown whether directly stimulating the inflammatory reflex in humans inhibits TNF production. Here we show that an implantable vagus nerve-stimulating device in epilepsy patients inhibits peripheral blood production of TNF, IL-1β, and IL-6. Vagus nerve stimulation (up to four times daily) in RA patients significantly inhibited TNF production for up to 84 d. Moreover, RA disease severity, as measured by standardized clinical composite scores, improved significantly. Together, these results establish that vagus nerve stimulation targeting the inflammatory reflex modulates TNF production and reduces inflammation in humans. These findings suggest that it is possible to use mechanism-based neuromodulating devices in the experimental therapy of RA and possibly other autoimmune and autoinflammatory diseases.

Concepts: Inflammation, Cytokine, Interleukin 1, Rheumatoid arthritis, Vagus nerve, Autoimmune disease, Vagus nerve stimulation, Tumor necrosis factor-alpha

183

There is compelling evidence to support an aetiological role for inflammation, oxidative and nitrosative stress (O&NS), and mitochondrial dysfunction in the pathophysiology of major neuropsychiatric disorders, including depression, schizophrenia, bipolar disorder, and Alzheimer’s disease (AD). These may represent new pathways for therapy. Aspirin is a non-steroidal anti-inflammatory drug that is an irreversible inhibitor of both cyclooxygenase (COX)-1 and COX-2, It stimulates endogenous production of anti-inflammatory regulatory ‘braking signals’, including lipoxins, which dampen the inflammatory response and reduce levels of inflammatory biomarkers, including C-reactive protein, tumor necrosis factor- and interleukin (IL)–6 , but not negative immunoregulatory cytokines, such as IL-4 and IL-10. Aspirin can reduce oxidative stress and protect against oxidative damage. Early evidence suggests there are beneficial effects of aspirin in preclinical and clinical studies in mood disorders and schizophrenia, and epidemiological data suggests that high-dose aspirin is associated with a reduced risk of AD. Aspirin, one of the oldest agents in medicine, is a potential new therapy for a range of neuropsychiatric disorders, and may provide proof-of-principle support for the role of inflammation and O&NS in the pathophysiology of this diverse group of disorders.

Concepts: Inflammation, Cyclooxygenase, Anti-inflammatory, Paracetamol, Mental disorder, Schizophrenia, Bipolar disorder, Tumor necrosis factor-alpha

178

Particulate air pollution has been associated with increased risk of cardiopulmonary diseases. However, the underlying mechanisms are not fully understood. We have previously demonstrated that single dose exposure to diesel exhaust particle (DEP) causes lung inflammation and peripheral thrombotic events. Here, we exposed mice with repeated doses of DEP (15 µg/animal) every 2(nd) day for 6 days (a total of 4 exposures), and measured several cardiopulmonary endpoints 48 h after the end of the treatments. Moreover, the potential protective effect of curcumin (the yellow pigment isolated from turmeric) on DEP-induced cardiopulmonary toxicity was assessed. DEP exposure increased macrophage and neutrophil numbers, tumor necrosis factor α (TNF α) in the bronchoalveolar lavage (BAL) fluid, and enhanced airway resistance to methacoline measured invasively using Flexivent. DEP also significantly increased plasma C-reactive protein (CRP) and TNF α concentrations, systolic blood pressure (SBP) as well as the pial arteriolar thrombosis. It also significantly enhanced the plasma D-dimer and plasminogen activator inhibitor-1 (PAI-1). Pretreatment with curcumin by oral gavage (45 mg/kg) 1 h before exposure to DEP significantly prevented the influx of inflammatory cells and the increase of TNF α in BAL, and the increased airway resistance caused by DEP. Likewise, curcumin prevented the increase of SBP, CRP, TNF α, D-dimer and PAI-1. The thrombosis was partially but significantly mitigated. In conclusion, repeated exposure to DEP induced lung and systemic inflammation characterized by TNFα release, increased SBP, and accelerated coagulation. Our findings indicate that curcumin is a potent anti-inflammatory agent that prevents the release of TNFα and protects against the pulmonary and cardiovascular effects of DEP.

Concepts: Inflammation, Blood, Heart, Vein, Anti-inflammatory, C-reactive protein, Tumor necrosis factor-alpha, Air pollution

168

Genistein, the major isoflavone in soybean, was recently reported to exert beneficial effects in metabolic disorders and inflammatory diseases. In the present study, we investigated the effects and mechanisms of a dietary concentration of genistein on the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Our results demonstrated that genistein effectively inhibited the LPS-induced overproduction of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), as well as LPS-induced nuclear factor kappa B (NF-κB) activation. In addition, the data also showed that genistein prevented LPS-induced decrease in adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. These effects were obviously attenuated by an AMPK inhibitor. Taken together, our results suggest that the dietary concentration of genistein is able to attenuate inflammatory responses via inhibition of NF-κB activation following AMPK stimulation. The data provide direct evidence for the potential application of low concentrations of genistein in the prevention and treatment of inflammatory diseases.

Concepts: Immune system, Inflammation, Adenosine triphosphate, Interleukin, Enzyme inhibitor, Fever, Tumor necrosis factor-alpha, AMP-activated protein kinase

167

Endothelial activation characterized by the expression of multiple chemokines and adhesive molecules is a critical initial step of vascular inflammation which results in recruitment of leukocytes into sub-endothelial layer of vascular wall and triggers vascular inflammatory diseases such as atherosclerosis. Although inhibiting the endothelial inflammation has already been well recognized as a therapeutic strategy in vascular inflammatory diseases, the therapeutic targets are still elusive. In the present study we found that Zc3h12c, a recently discovered CCCH-zinc finger containing protein, significantly inhibited endothelial cell inflammatory response in vitro. Overexpression of Zc3h12c significantly attenuated tumor necrosis factor a (TNFa) induced expression of chemokines and adhesive molecules, and thus reduced monocyte adherence to human umbilical vein endothelial cells (HUVECs). Conversely, siRNA-mediated knocking down of Zc3h12c increased TNFα-induced expression of chemokines and adhesive molecules in HUVECs. Furthermore, forced expression of Zc3h12c decreased TNFα-induced IKKa/b and IkBa phosphorylation and p65 nuclear translocation, suggesting that Zc3h12c exerted the anti-inflammatory function probably by suppressing nuclear factor-kB (NF-kB) pathway. Thus, Zc3h12c is an endogenous inhibitor of TNFα-induced inflammatory signaling in HUVECs and might be a therapeutic target in vascular inflammatory diseases.

Concepts: Immune system, Inflammation, Atherosclerosis, Blood vessel, Endothelium, Anti-inflammatory, C-reactive protein, Tumor necrosis factor-alpha

165

Toll like receptors (TLRs) are pattern-recognition molecules that initiate the innate immune response to pathogens. Pulmonary surfactant protein (SP)-A is an endogenously produced ligand for TLR2 and TLR4. SP-A has been proposed as a fetally produced signal for the onset of parturition in the mouse. We examined the effect of interactions between SP-A and the pathogenic TLR agonists lipopolysaccharide (LPS), peptidoglycan (PGN) and polyinosinic:cytidylic acid (poly(I:C)) (ligands for TLR4, TLR2 and TLR3, respectively) on the expression of inflammatory mediators and preterm delivery. Three types of mouse macrophages (the cell line RAW 264.7, and fresh amniotic fluid and peritoneal macrophages, including macrophages from TLR4 and TLR2 knockout mice) were treated for up to 7 hours with pathogenic TLR agonists with or without SP-A. SP-A alone had no effect upon inflammatory mediators in mouse macrophages and did not independently induce preterm labor. SP-A significantly suppressed TLR ligand-induced expression of inflammatory mediators (interleukin (IL)-1β, tumor necrosis factor (TNF)-α and the chemokine CCL5) via a TLR2 dependent mechanism. In a mouse inflammation-induced preterm delivery model, intrauterine administration of SP-A significantly inhibited preterm delivery, suppressed the expression of proinflammatory mediators and enhanced the expression of the CXCL1 and anti-inflammatory mediator IL-10. We conclude that SP-A acts via TLR2 to suppress TLR ligand-induced preterm delivery and inflammatory responses.

Concepts: Immune system, Inflammation, Childbirth, Bacteria, Innate immune system, Toll-like receptor, Chemokine, Tumor necrosis factor-alpha

143

The efficacy and safety of vedolizumab, a humanized immunoglobulin G1 monoclonal antibody against the integrin α4β7, was demonstrated in multicenter, phase 3, randomized, placebo-controlled trials in patients with moderately to severely active ulcerative colitis (UC) or Crohn’s disease. We analyzed data from 1 of these trials to determine the effects of vedolizumab therapy in patients with UC, based on past exposure to anti-tumor necrosis factor (TNF) agents.

Concepts: Monoclonal antibodies, Ulcerative colitis, Crohn's disease, Colon, Colitis, Infliximab, Abdominal pain, Tumor necrosis factor-alpha

119

Tiered formularies, in which patients pay copays or coinsurance out-of-pocket (OOP), are used to manage costs and encourage more efficient health care resource use. Formulary tiers are typically based on the cost of treatment rather than the medical appropriateness for the patient. Cost sharing may have unintended consequences on treatment adherence and health outcomes. Use of higher-cost, higher-tier medications can be due to a variety of factors, including unsuccessful treatment because of lack of efficacy or side effects, patient clinical or genetic characteristics, patient preferences to avoid potential side effects, or patient preferences based on the route of administration. For example, patients with rheumatoid arthritis may be required to fail low-cost generic treatments before obtaining coverage for a higher-tier tumor necrosis factor alpha inhibitor for which they would have a larger financial burden. Little is known about stakeholders' views on the acceptability of greater patient cost sharing if the individual patient characteristics lead to the higher-cost treatments.

Concepts: Health care provider, Pharmacology, Medicine, Patient, Illness, Ethics, Cost, Tumor necrosis factor-alpha

95

Chronic inflammatory diseases such as arthritis are characterized by dysregulated responses to pro-inflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α). Pharmacologic anti-cytokine therapies are often effective at diminishing this inflammatory response but have significant side effects and are used at high, constant doses that do not reflect the dynamic nature of disease activity. Using the CRISPR/Cas9 genome-engineering system, we created stem cells that antagonize IL-1- or TNF-α-mediated inflammation in an autoregulated, feedback-controlled manner. Our results show that genome engineering can be used successfully to rewire endogenous cell circuits to allow for prescribed input/output relationships between inflammatory mediators and their antagonists, providing a foundation for cell-based drug delivery or cell-based vaccines via a rapidly responsive, autoregulated system. The customization of intrinsic cellular signaling pathways in stem cells, as demonstrated here, opens innovative possibilities for safer and more effective therapeutic approaches for a wide variety of diseases.

Concepts: Immune system, Inflammation, Medicine, Interleukin 1, Infection, Rheumatoid arthritis, Anti-inflammatory, Tumor necrosis factor-alpha