Discover the most talked about and latest scientific content & concepts.

Concept: Tryptophan


Cognitive impairment (CI) and major depressive disorder (MDD) remain prevalent in treated HIV-1 disease; however, the pathogenesis remains elusive. A possible contributing mechanism is immune-mediated degradation of tryptophan (TRP) via the kynurenine (KYN) pathway, resulting in decreased production of serotonin and accumulation of TRP degradation products. We explored the association of these biochemical pathways and their relationship with CI and MDD in HIV-positive (HIV+) individuals.

Concepts: Serotonin transporter, Fluoxetine, Dysthymia, Tryptophan, Sertraline, Selective serotonin reuptake inhibitor, Major depressive disorder, Serotonin


Central serotonin (5-hydroxytryptophan, 5-HT) modulates somatosensory transduction, but how it achieves sensory modality-specific modulation remains unclear. Here we report that enhancing serotonergic tone via administration of 5-HT potentiates itch sensation, whereas mice lacking 5-HT or serotonergic neurons in the brainstem exhibit markedly reduced scratching behavior. Through pharmacological and behavioral screening, we identified 5-HT1A as a key receptor in facilitating gastrin-releasing peptide (GRP)-dependent scratching behavior. Coactivation of 5-HT1A and GRP receptors (GRPR) greatly potentiates subthreshold, GRP-induced Ca(2+) transients, and action potential firing of GRPR(+) neurons. Immunostaining, biochemical, and biophysical studies suggest that 5-HT1A and GRPR may function as receptor heteromeric complexes. Furthermore, 5-HT1A blockade significantly attenuates, whereas its activation contributes to, long-lasting itch transmission. Thus, our studies demonstrate that the descending 5-HT system facilitates GRP-GRPR signaling via 5-HT1A to augment itch-specific outputs, and a disruption of crosstalk between 5-HT1A and GRPR may be a useful antipruritic strategy. VIDEO ABSTRACT:

Concepts: 5-HT3 antagonist, Signal transduction, Molecular biology, Selective serotonin reuptake inhibitor, Neuron, Tryptophan, Receptor, Serotonin


The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to a differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders.

Concepts: Bacteria, Metabolism, Neurotransmitter, Neuron, Central nervous system, Tryptophan, Nervous system, Serotonin


The role of the pineal gland is to translate the rhythmic cycles of night and day encoded by the retina into hormonal signals that are transmitted to the rest of the neuronal system in the form of serotonin and melatonin synthesis and release. Here we describe that the production of both melatonin and serotonin by the pineal gland is regulated by a circadian-related heteromerization of adrenergic and dopamine D₄ receptors. Through α(₁B)-D₄ and β₁-D₄ receptor heteromers dopamine inhibits adrenergic receptor signaling and blocks the synthesis of melatonin induced by adrenergic receptor ligands. This inhibition was not observed at hours of the day when D₄ was not expressed. These data provide a new perspective on dopamine function and constitute the first example of a circadian-controlled receptor heteromer. The unanticipated heteromerization between adrenergic and dopamine D₄ receptors provides a feedback mechanism for the neuronal hormone system in the form of dopamine to control circadian inputs.

Concepts: Pineal gland, Hormone, Tryptophan, Serotonin, Endocrinology, Cell signaling, Receptor, Melatonin


PURPOSE OF REVIEW: Although the gut contains most of the body’s 5-hydroxytryptamine (5-HT), many of its most important functions have recently been discovered. This review summarizes and directs attention to this new burst of knowledge. RECENT FINDINGS: Enteroendocrine cells have classically been regarded as pressure sensors, which secrete 5-HT to initiate peristaltic reflexes; nevertheless, recent data obtained from studies of mice that selectively lack 5-HT either in enterochromaffin cells (deletion of tryptophan hydroxylase 1 knockout; TPH1KO) or neurons (TPH2KO) imply that neuronal 5-HT is more important for constitutive gastrointestinal transit than that of enteroendocrine cells. The enteric nervous system of TPH2KO mice, however, also lacks a full complement of neurons; therefore, it is not clear whether slow transit in TPH2KO animals is due to their neuronal deficiency or absence of serotonergic neurotransmission. Neuronal 5-HT promotes the growth/maintenance of the mucosa as well as neurogenesis. Enteroendocrine cell derived 5-HT is an essential component of the gastrointestinal inflammatory response; thus, deletion of the serotonin transporter increases, whereas TPH1KO decreases the severity of intestinal inflammation. Enteroendocrine cell derived 5-HT, moreover, is also a hormone, which inhibits osteoblast proliferation and promotes hepatic regeneration. SUMMARY: New studies show that enteric 5-HT is a polyfunctional signalling molecule, acting both in developing and mature animals as a neurotransmitter paracrine factor, endocrine hormone and growth factor.

Concepts: Enterochromaffin cell, Cells, Neurotransmitter, Dopamine, Nervous system, Tryptophan, Neuron, Serotonin


A general and practical method to synthesize 2-substituted benzofurans and indoles is described. This method employs easily accessible N-tosylhydrazones and o-hydroxy or o-amino phenylacetylenes as substrates. The reaction proceeds through a CuBr-catalyzed coupling-allenylation-cyclization sequence under ligand-free conditions.

Concepts: Tryptophan, Chemical reaction, Chemical synthesis, Benzofurans, Synthesis, Bartoli indole synthesis, Benzofuran, Indole


Indoleamine 2,3-dioxygenase (IDO) is an interferon-γ (IFN-γ)-induced tryptophan-degrading enzyme, producing kynurenine (KYN) that participates in the mechanism of tumor immune tolerance. Thus, IDO inhibition has been considered a strategy for anticancer therapy. The aim of this study was to identify whether the metabolites originated from the competitive routes of tryptophan metabolism, such as the serotonergic or N, N-dimethyltryptamine (DMT) pathways, have inhibitory effects on recombinant human IDO (rhIDO) activity. Serotonin and melatonin had no effect; on the other hand, tryptamine (TRY) and DMT modulated the activity of rhIDO as classical non-competitive inhibitors, with Ki values of 156 and 506 μM, respectively. This inhibitory effect was also observed on constitutively expressed or IFN-γ-induced IDO in the A172 human glioma cell line. TRY and DMT increased the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) in co-culture assays. We conclude that the IDO inhibition by TRY and DMT contributed to a more effective tumor-reactive response by the PBMCs. Copyright © 2013 John Wiley & Sons, Ltd.

Concepts: Inhibitor, Cell, Dimethyltryptamine, Immune system, Enzyme inhibitor, PBMC, Tryptophan, Serotonin


This study demonstrates that injection of the serotonin precursor 5-HTP causes substantial changes in the behavioral state, fighting behavior and ability to establish winner-loser relationships in male crickets (Gryllus bimaculatus). The characteristic features of 5-HTP-treated crickets include an elevated posture, enhanced general activity, longer duration of fighting, enhanced rival singing and a decreased ability to produce a clear fight loser. In addition, 5-HTP-treated males showed a slightly delayed latency to spread their mandibles, a decreased number of attacks and an equal potential to win in comparison to controls (physiological solution-treated males). The obtained results imply a significant role for serotonin in the regulation of social status-related behaviors in G. bimaculatus. Specifically, these data indicate that a decrease in serotonergic activity may be functionally important for the control of loser behavior and that some behavioral features of dominant male crickets are likely to be connected with the activation of the serotonergic system.

Concepts: Selective serotonin reuptake inhibitor, Psychology, Human behavior, Gryllus bimaculatus, Serotonin, Behavior, Evolutionary physiology, Tryptophan


Indoleamine 2,3-dioxygenase-2 (IDO2) is one of three enzymes (alongside tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase (IDO1)) that catalyse dioxygenation of L-tryptophan as the first step in the kynurenine pathway. Despite the reported expression of IDO2 in tumours, some fundamental characteristics of the enzyme, such as substrate specificity and inhibition selectivity, are still to be clearly defined. In this study, we report the kinetic and inhibition characteristics of recombinant human IDO2. Choosing from a series of likely IDO2 substrates, we screened 54 tryptophan derivatives and tryptophan-like molecules, and characterised the 8 with which the enzyme was most active. Specificity of IDO2 for the two isomers of 1-methyltryptophan was also evaluated and the findings compared with those obtained in other studies on IDO2 and IDO1. Interestingly, IDO2 demonstrates behaviour distinct from that of IDO1 in terms of substrate specificity and affinity, such that we have identified tryptophan derivatives that are mutually exclusive as substrates for IDO1 and IDO2. Our results support the idea that the antitumour activity of 1-Me-D-Trp is unlikely to be related with competitive inhibition of IDO2, and also imply that there are subtle differences in active site structure in the two enzymes that may be exploited in the development of specific inhibitors of these enzymes, a route which may prove important in defining their role(s) in cancer.

Concepts: Enzyme kinetics, Tryptophan, Biomolecules, Product, Enzyme substrate, Catalysis, Enzyme inhibitor, Enzyme


Tryptophan (Trp), an essential amino acid, has an indole ring with a high electron density and is frequently seen at the proximal position of the metal site in metalloproteins. For example, the indole ring of Trp has been reported to interact weakly with Cu(I) in a Cu chaperone CusF. Another aromatic amino acid, tyrosine (Tyr), has a phenol ring, which is an important metal binding site in various metalloproteins. Although the structures of the aromatic rings are different, they both have a weakly acidic moiety and perform some similar roles in biological systems, such as radical formation and electron transfer. In this review, we focus on these and other properties of the indole and phenol rings in metal-containing systems.

Concepts: Amine, Essential amino acid, DNA, Electrophilic aromatic substitution, Phenylalanine, Tryptophan, Protein, Amino acid