Discover the most talked about and latest scientific content & concepts.

Concept: Trypanosoma brucei


Novel drugs to treat human African trypanosomiasis (HAT) are still urgently needed despite the recent addition of nifurtimox-eflornithine combination therapy (NECT) to WHO Model Lists of Essential Medicines against second stage HAT, where parasites have invaded the central nervous system (CNS). The pharmacology of a potential orally available lead compound, N-methoxy-6-{5-[4-(N-methoxyamidino) phenyl]-furan-2-yl}-nicotinamidine (DB844), was evaluated in a vervet monkey model of second stage HAT, following promising results in mice. DB844 was administered orally to vervet monkeys, beginning 28 days post infection (DPI) with Trypanosoma brucei rhodesiense KETRI 2537. DB844 was absorbed and converted to the active metabolite 6-[5-(4-phenylamidinophenyl)-furanyl-2-yl]-nicotinamide (DB820), exhibiting plasma C(max) values of 430 and 190 nM for DB844 and DB820, respectively, after the 14th dose at 6 mg/kg qd. A 100-fold reduction in blood trypanosome counts was observed within 24 h of the third dose and, at the end of treatment evaluation performed four days post the last drug dose, trypanosomes were not detected in the blood or cerebrospinal fluid of any monkey. However, some animals relapsed during the 300 days of post treatment monitoring, resulting in a cure rate of 3/8 (37.5%) and 3/7 (42.9%) for the 5 mg/kg×10 days and the 6 mg/kg×14 days dose regimens respectively. These DB844 efficacy data were an improvement compared with pentamidine and pafuramidine both of which were previously shown to be non-curative in this model of CNS stage HAT. These data show that synthesis of novel diamidines with improved activity against CNS-stage HAT was possible.

Concepts: Central nervous system, Nervous system, Pharmacology, Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Trypanosome


BACKGROUND: Specific land cover types and activities have been correlated with Trypanosoma brucei rhodesiense distributions, indicating the importance of landscape for epidemiological risk. However, methods proposed to identify specific areas with elevated epidemiological risk (i.e. where transmission is more likely to occur) tend to be costly and time consuming. This paper proposes an exploratory spatial analysis using geo-referenced human African trypanosomiasis (HAT) cases and matched controls from Serere hospital, Uganda (December 1998 to November 2002) to identify areas with an elevated epidemiological risk of HAT. METHODS: Buffers 3 km from each case and control were used to represent areas in which village inhabitants would carry out their daily activities. It was hypothesised that the selection of areas where several case village buffers overlapped would enable the identification of locations with increased risk of HAT transmission, as these areas were more likely to be frequented by HAT cases in several surrounding villages. The landscape within these overlap areas should more closely relate to the environment in which transmission occurs as opposed to using the full buffer areas. The analysis was carried out for each of four annual periods, for both cases and controls, using a series of threshold values (number of overlapping buffers), including a threshold of one, which represented the benchmark (e.g. use of the full buffer area as opposed to the overlap areas). RESULTS: A greater proportion of the overlap areas for cases consisted of seasonally flooding grassland and lake fringe swamp, than the control overlap areas, correlating well with the preferred habitat of the predominant tsetse species within the study area (Glossina fuscipes fuscipes). The use of overlap areas also resulted in a greater difference between case and control landscapes, when compared with the benchmark (using the full buffer area). CONCLUSIONS: These results indicate that the overlap analysis has enabled the selection of areas more likely to represent epidemiological risk zones than similar analyses using full buffer areas. The identification of potential epidemiological risk zones using this method requires fewer data than other proposed methods and further development may provide vital information for the targeting of control measures.

Concepts: Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Buffer, Tsetse fly, Sleeping sickness, Sterile insect technique


Human African Trypanosomiasis is a vector-borne disease of sub-Saharan Africa that causes significant morbidity and mortality. Current therapies have many drawbacks, and there is an urgent need for new, better medicines. Ideally such new treatments should be fast-acting cidal agents that cure the disease in as few doses as possible. Screening assays used for hit-discovery campaigns often do not distinguish cytocidal from cytostatic compounds and further detailed follow-up experiments are required. Such studies usually do not have the throughput required to test the large numbers of hits produced in a primary high-throughput screen. Here, we present a 384-well assay that is compatible with high-throughput screening and provides an initial indication of the cidal nature of a compound. The assay produces growth curves at ten compound concentrations by assessing trypanosome counts at 4, 24 and 48 hours after compound addition. A reduction in trypanosome counts over time is used as a marker for cidal activity. The lowest concentration at which cell killing is seen is a quantitative measure for the cidal activity of the compound. We show that the assay can identify compounds that have trypanostatic activity rather than cidal activity, and importantly, that results from primary high-throughput assays can overestimate the potency of compounds significantly. This is due to biphasic growth inhibition, which remains hidden at low starting cell densities and is revealed in our static-cidal assay. The assay presented here provides an important tool to follow-up hits from high-throughput screening campaigns and avoid progression of compounds that have poor prospects due to lack of cidal activity or overestimated potency.

Concepts: Pharmacology, Drug discovery, Chemical compound, Trypanosoma brucei, African trypanosomiasis, Euglenozoa, Trypanosome, High-throughput screening


The emphasis placed on the activities of mobile teams in the detection of gambiense human African trypanosomiasis (HAT) can at times obscure the major role played by fixed health facilities in HAT control and surveillance. The lack of consistent and detailed data on the coverage of passive case-finding and treatment further constrains our ability to appreciate the full contribution of the health system to the control of HAT.

Concepts: Parasitic diseases, Trypanosoma brucei, African trypanosomiasis, Major, Trypanosome, Tsetse fly, Sleeping sickness, ObsCure II


Evolutionary theory predicts that the lack of recombination and chromosomal re-assortment in strictly asexual organisms results in homologous chromosomes irreversibly accumulating mutations and thus evolving independently of each other, a phenomenon termed the Meselson effect. We apply a population genomics approach to examine this effect in an important human pathogen, Trypanosoma brucei gambiense. We determine that T.b. gambiense is evolving strictly asexually and is derived from a single progenitor, which emerged within the last 10,000 years. We demonstrate the Meselson effect for the first time at the genome-wide level in any organism and show large regions of loss of heterozygosity, which we hypothesise to be a short-term compensatory mechanism for counteracting deleterious mutations. Our study sheds new light on the genomic and evolutionary consequences of strict asexuality, which this pathogen uses as it exploits a new biological niche, the human population.

Concepts: Immune system, DNA, Gene, Genetics, Bacteria, Evolution, Biology, Trypanosoma brucei


Sleeping sickness is a fatal disease caused by Trypanosoma brucei, a unicellular parasite that lives in the bloodstream and interstitial spaces of peripheral tissues and the brain. Patients have altered sleep/wake cycles, body temperature, and endocrine profiles, but the underlying causes are unknown. Here, we show that the robust circadian rhythms of mice become phase advanced upon infection, with abnormal activity occurring during the rest phase. This advanced phase is caused by shortening of the circadian period both at the behavioral level as well as at the tissue and cell level. Period shortening is T. brucei specific and independent of the host immune response, as co-culturing parasites with explants or fibroblasts also shortens the clock period, whereas malaria infection does not. We propose that T. brucei causes an advanced circadian rhythm disorder, previously associated only with mutations in clock genes, which leads to changes in the timing of sleep.

Concepts: Immune system, Bacteria, Sleep, Trypanosoma brucei, Circadian rhythm, Period, Chronotype, Circadian rhythm sleep disorder


The role of mammalian skin in harbouring and transmitting arthropod-borne protozoan parasites has been overlooked for decades as these pathogens have been regarded primarily as blood-dwelling organisms. Intriguingly, infections with low or undetected blood parasites are common, particularly in the case of Human African Trypanosomiasis caused by Trypanosoma brucei gambiense. We hypothesise, therefore, the skin represents an anatomic reservoir of infection. Here we definitively show that substantial quantities of trypanosomes exist within the skin following experimental infection, which can be transmitted to the tsetse vector, even in the absence of detectable parasitaemia. Importantly, we demonstrate the presence of extravascular parasites in human skin biopsies from undiagnosed individuals. The identification of this novel reservoir requires a re-evaluation of current diagnostic methods and control policies. More broadly, our results indicate that transmission is a key evolutionary force driving parasite extravasation that could further result in tissue invasion-dependent pathology.

Concepts: Immune system, Bacteria, Skin, Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Tsetse fly


Trypanosoma brucei, the causative agent of African sleeping sickness, is transmitted to its mammalian host by the tsetse. In the fly, the parasite’s surface is covered with invariant procyclin, while in the mammal it resides extracellularly in its bloodstream form (BF) and is densely covered with highly immunogenic Variant Surface Glycoprotein (VSG). In the BF, the parasite varies this highly immunogenic surface VSG using a repertoire of ~2500 distinct VSG genes. Recent reports in mammalian systems point to a role for histone acetyl-lysine recognizing bromodomain proteins in the maintenance of stem cell fate, leading us to hypothesize that bromodomain proteins may maintain the BF cell fate in trypanosomes. Using small-molecule inhibitors and genetic mutants for individual bromodomain proteins, we performed RNA-seq experiments that revealed changes in the transcriptome similar to those seen in cells differentiating from the BF to the insect stage. This was recapitulated at the protein level by the appearance of insect-stage proteins on the cell surface. Furthermore, bromodomain inhibition disrupts two major BF-specific immune evasion mechanisms that trypanosomes harness to evade mammalian host antibody responses. First, monoallelic expression of the antigenically varied VSG is disrupted. Second, rapid internalization of antibodies bound to VSG on the surface of the trypanosome is blocked. Thus, our studies reveal a role for trypanosome bromodomain proteins in maintaining bloodstream stage identity and immune evasion. Importantly, bromodomain inhibition leads to a decrease in virulence in a mouse model of infection, establishing these proteins as potential therapeutic drug targets for trypanosomiasis. Our 1.25Å resolution crystal structure of a trypanosome bromodomain in complex with I-BET151 reveals a novel binding mode of the inhibitor, which serves as a promising starting point for rational drug design.

Concepts: Immune system, Antibody, Protein, Gene, Enzyme inhibitor, Trypanosoma brucei, African trypanosomiasis, Trypanosomiasis


The highly motile and versatile protozoan pathogen Trypanosoma brucei undergoes a complex life cycle in the tsetse fly. Here we introduce the host insect as an expedient model environment for microswimmer research, as it allows examination of microbial motion within a diversified, secluded and yet microscopically tractable space. During their week-long journey through the different microenvironments of the fly´s interior organs, the incessantly swimming trypanosomes cross various barriers and confined surroundings, with concurrently occurring major changes of parasite cell architecture. Multicolour light sheet fluorescence microscopy provided information about tsetse tissue topology with unprecedented resolution and allowed the first 3D analysis of the infection process. High-speed fluorescence microscopy illuminated the versatile behaviour of trypanosome developmental stages, ranging from solitary motion and near-wall swimming to collective motility in synchronised swarms and in confinement. We correlate the microenvironments and trypanosome morphologies to high-speed motility data, which paves the way for cross-disciplinary microswimmer research in a naturally evolved environment.

Concepts: Immune system, Bacteria, Biology, Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Microscopy, Trypanosomiasis


The cysteine protease rhodesain of Trypanosoma brucei parasites causing African sleeping sickness has emerged as a target for the development of new drug candidates. Based on a triazine nitrile moiety as electrophilic headgroup, optimization studies on the substituents for the S1, S2, and S3 pockets of the enzyme were performed using structure-based design and resulted in inhibitors with inhibition constants in the single-digit nanomolar range. Comprehensive structure-activity relationships clarified the binding preferences of the individual pockets of the active site. The S1 pocket tolerates various substituents with a preference for flexible and basic side chains. Variation of the S2 substituent led to high-affinity ligands with inhibition constants down to 2 nM for compounds bearing cyclohexyl substituents. Systematic investigations on the S3 pocket revealed its potential to achieve high activities with aromatic vectors that undergo stacking interactions with the planar peptide backbone forming part of the pocket. X-ray crystal structure analysis with the structurally related enzyme human cathepsin L confirmed the binding mode of the triazine ligand series as proposed by molecular modeling. Sub-micromolar inhibition of the proliferation of cultured parasites was achieved for ligands decorated with the best substituents identified through the optimization cycles. In cell-based assays, the introduction of a basic side chain on the inhibitors resulted in a 35-fold increase in antitrypanosomal activity. Finally, bioisosteric imidazopyridine nitriles were studied in order to prevent off-target effects with unselective nucleophiles by decreasing the inherent electrophilicity of the triazine nitrile headgroup. Using this ligand, the stabilization by intramolecular hydrogen bonding of the thioimidate intermediate, formed upon attack of the catalytic cysteine residue, compensates for the lower reactivity of the headgroup. The imidazopyridine nitrile ligand showed excellent stability toward the thiol nucleophile glutathione in a quantitative in vitro assay and fourfold lower cytotoxicity than the parent triazine nitrile.

Concepts: Amino acid, Amine, Cyanide, Enzyme inhibitor, Trypanosoma brucei, African trypanosomiasis, Nucleophile, Substituent