SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Tree

175

Gravity has major effects on both the form and overall length of root growth. Numerous papers have documented these effects (over 300 publications in the last 5 years), the most well-studied being gravitropism, which is a growth re-orientation directed by gravity toward the earth’s center. Less studied effects of gravity are undulations due to the regular periodic change in the direction root tips grow, called waving, and the slanted angle of growth roots exhibit when they are growing along a nearly-vertical surface, called skewing. Although diverse studies have led to the conclusion that a gravity stimulus is needed for plant roots to show waving and skewing, the novel results just published by Paul et al. (2012) reveal that this conclusion is not correct. In studies carried out in microgravity on the International Space Station, the authors used a new imaging system to collect digital photographs of plants every six hours during 15 days of spaceflight. The imaging system allowed them to observe how roots grew when their orientation was directed not by gravity but by overhead LED lights, which roots grew away from because they are negatively phototropic. Surprisingly, the authors observed both skewing and waving in spaceflight plants, thus demonstrating that both growth phenomena were gravity independent. Touch responses and differential auxin transport would be common features of root waving and skewing at 1-g and micro-g, and the novel results of Paul et al. will focus the attention of cell and molecular biologists more on these features as they try to decipher the signaling pathways that regulate root skewing and waving.

Concepts: Plant, Earth, Observation, Tree, Root, International Space Station, Auxin, Gravitropism

171

Community compensatory trend (CCT) is thought to facilitate persistence of rare species and thus stabilize species composition in tropical forests. However, whether CCT acts over broad geographical ranges is still in question. In this study, we tested for the presence of negative density dependence (NDD) and CCT in three forests along a tropical-temperate gradient. Inventory data were collected from forest communities located in three different latitudinal zones in China. Two widely used methods were used to test for NDD at the community level. The first method considered relationships between the relative abundance ratio and adult abundance. The second method emphasized the effect of adult abundance on abundance of established younger trees. Evidence for NDD acting on different growth forms was tested by using the first method, and the presence of CCT was tested by checking whether adult abundance of rare species affected that of established younger trees less than did abundance of common species. Both analyses indicated that NDD existed in seedling, sapling and pole stages in all three plant communities and that this effect increased with latitude. However, the extent of NDD varied among understory, midstory and canopy trees in the three communities along the gradient. Additionally, despite evidence of NDD for almost all common species, only a portion of rare species showed NDD, supporting the action of CCT in all three communities. So, we conclude that NDD and CCT prevail in the three recruitment stages of the tree communities studied; rare species achieve relative advantage through CCT and thus persist in these communities; CCT clearly facilitates newly established species and maintains tree diversity within communities across our latitudinal gradient.

Concepts: Plant, Forest, Tree, Plant morphology, Rainforest, Trees, Rare species, Common species

170

Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production, allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration, the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one- to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows that the balance between internode and needle growth varies only slightly within the range of precipitations considered here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different soils and climates.

Concepts: Precipitation, Soil, Tree, Scots Pine, Pine, Pinus classification, Biomass, Pinus

168

BackgroundFirst proposed by Cavender and Felsenstein, and Lake, invariant based algorithms for phylogenetic reconstruction were widely dismissed by practicing biologists because invariants were perceived to have limited accuracy in constructing trees based on DNA sequences of reasonable length. Recent developments by algebraic geometers have led to the construction of lists of invariants which have been demonstrated to be more accurate on small sequences, but were limited in that they could only be used for trees with small numbers of taxa. We have developed and tested an invariant based quartet puzzling algorithm which is accurate and efficient for biologically reasonable data sets. Results We found that our algorithm outperforms Maximum Likelihood based quartet puzzling on data sets simulated with low to medium evolutionary rates. For faster rates of evolution, invariant based quartet puzzling is reasonable but less effective than maximum likelihood based puzzling. Conclusions This is a proof of concept algorithm which is not intended to replace existing reconstruction algorithms. Rather, the conclusion is that when seeking solutions to a new wave of phylogenetic problems (super tree algorithms, gene vs. species tree, mixture models), invariant based methods should be considered. This article demonstrates that invariants are a practical, reasonable and flexible source for reconstruction techniques.

Concepts: DNA, Evolution, Biology, Organism, Species, Tree, Graph theory, Conclusion

166

Agarwood is the fragrant resin-infused wood derived from the wounded trees of Aquilaria species. It is a valuable non-timber forest product used in fragrances and as medicine. Reforestation for Aquilaria trees in combination with artificial agarwood-inducing methods serves as a way to supply agarwood and conserve of wild Aquilaria stock. However, the existing agarwood-inducing methods produce poor-quality agarwood at low yield. Our study evaluated a novel technique for producing agarwood in cultivated Aquilaria trees, called the whole-tree agarwood-inducing technique (Agar-Wit). Ten different agarwood inducers were used for comparison of Agar-Wit with three existing agarwood-inducing methods. For Aquilaria trees treated with these ten inducers, agarwood formed and spread throughout the entire tree from the transfusion point in the trunk to the roots and branches of the whole tree. Agarwood yield per tree reached 2,444.83 to 5,860.74 g, which is 4 to 28 times higher than that by the existing agarwood-inducing methods. Furthermore, this agarwood derived from Agar-Wit induction was found to have a higher quality compared with the existing methods, and similar to that of wild agarwood. This indicates Agar-Wit may have commercial potential. Induction of cultivated agarwood using this method could satisfy the significant demand for agarwood, while conserving and protecting the remaining wild Aquilaria trees.

Concepts: Forestry, Tree, Wood, Branch, Trunk, Agarwood, Aquilaria, Aquilaria sinensis

163

Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.

Concepts: Ecosystem, Forest, Tree, Shrub, Douglas-fir, Null hypothesis, Thuja plicata, Tsuga heterophylla

159

dendextend is an R package for creating and comparing visually appealing tree diagrams. dendextend provides utility functions for manipulating dendrogram objects (their color, shape, and content) as well as several advanced methods for comparing trees to one another (both statistically and visually). As such, dendextend offers a flexible framework for enhancing R’s rich ecosystem of packages for performing hierarchical clustering of items.

Concepts: Hierarchy, Tree, Utility, Hierarchical clustering, Package, Packet, Java package, Dendrogram

145

Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation.

Concepts: Plant, Climate, Tree, Rainforest, Mediterranean climate, Steppe, Taiga, Tree line

100

The ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban ‘heat-island’ effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.

Concepts: Biology, Plant, Ecology, Urban area, Tree, Lighting, Oak, Deciduous

97

Amazonia is the most biodiverse rainforest on Earth, and the debate over how many tree species grow there remains contentious. Here we provide a checklist of all tree species collected to date, and describe spatial and temporal trends in data accumulation. We report 530,025 unique collections of trees in Amazonia, dating between 1707 and 2015, for a total of 11,676 species in 1225 genera and 140 families. These figures support recent estimates of 16,000 total Amazonian tree species based on ecological plot data from the Amazonian Tree Diversity Network. Botanical collection in Amazonia is characterized by three major peaks, centred around 1840, 1920, and 1980, which are associated with flora projects and the establishment of inventory plots. Most collections were made in the 20th century. The number of collections has increased exponentially, but shows a slowdown in the last two decades. We find that a species' range size is a better predictor of the number of times it has been collected than the species' estimated basin-wide population size. Finding, describing, and documenting the distribution of the remaining species will require coordinated efforts at under-collected sites.

Concepts: Biodiversity, Biology, Species, Tree, 20th century, Brazil, Rainforest, Amazon Rainforest