Discover the most talked about and latest scientific content & concepts.

Concept: Transmitter


Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver.

Concepts: Optical fiber, Modulation, Polarization, Information theory, Radio, Amplitude modulation, Transmitter, Quadrature amplitude modulation


In this paper the influence of an example indoor environment on narrowband radio channel path loss for body area networks operating around 2.4 GHz is investigated using computer simulations and on-site measurements. In contrast to other similar studies, the simulation model included both a numerical human body phantom and its environment-room walls, floor and ceiling. As an example, radio signal attenuation between two different configurations of transceivers with dipole antennas placed in a direct vicinity of a human body (on-body scenario) is analyzed by computer simulations for several types of reflecting environments. In the analyzed case the propagation environments comprised a human body and office room walls. As a reference environment for comparison, free space with only a conducting ground plane, modelling a steel mesh reinforced concrete floor, was chosen. The transmitting and receiving antennas were placed in two on-body configurations chest-back and chest-arm. Path loss vs. frequency simulation results obtained using Finite Difference Time Domain (FDTD) method and a multi-tissue anthropomorphic phantom were compared to results of measurements taken with a vector network analyzer with a human subject located in an average-size empty cuboidal office room. A comparison of path loss values in different environments variants gives some qualitative and quantitative insight into the adequacy of simplified indoor environment model for the indoor body area network channel representation.

Concepts: Computer graphics, Qualitative research, Computer simulation, Mathematical model, Radio, Transmitter, Finite-difference time-domain method, Reinforced concrete


The Patched1 (Ptch)-mediated inhibition of Smoothened (Smo) is still an open question. However, a direct Ptch/Smo interaction has been excluded, Smo modulators were identified, but the endogenous signal transmitting molecule remains undiscovered. Here, we demonstrate that calcitriol, the hormonally active form of vitamin D3, is an excellent candidate for transmission of Ptch/Smo interaction. Our study reveals that Ptch expression is sufficient to release calcitriol from the cell and that calcitriol inhibits Smo action and ciliary translocation by acting on a site distinct from the 7-transmembrane-domain or the cysteine-rich-domain. Moreover calcitriol strongly synergizes with itraconazole (ITZ) in Smo inhibition which not results from elevated calcitriol bio-availability due to ITZ-mediated 24-hydroxylase inhibition but rather from a direct interaction of the compounds at the level of Smo. Together, we suggest that calcitriol represents a possible endogenous transmitter of Ptch/Smo interaction. Moreover calcitriol or calcitriol derivatives combined with ITZ might be a treatment option of Hedgehog-associated cancers.

Concepts: Vitamin D, Cancer, Enzyme inhibitor, Inhibitor, Transmitter, Transmission, Telecommunication


Salmon recovery and the potential detrimental effects of dams on fish have been attracting national attention due to the environmental and economic implications. In recent years acoustic telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing a bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter lasts four times longer and weighs 30% less than other transmitters. Because the new transmitter costs significantly less to use and may substantially reduce adverse effects of implantation and tag burden, it will allow for study of migration behavior and survival of species and sizes of fish that have never been studied before. The new technology will lead to critical information needed for salmon recovery and the development of fish-friendly hydroelectric systems.

Concepts: Fish, Salmon, Study skills, Cultural studies, Norway, Injection, Hydroelectricity, Transmitter


Biodegradable electronics represent an emerging class of technology with potential to provide advanced semiconductor functionality in temporary biomedical implants. This work reported a biodegradable primary battery as a potential power source for these systems, which uses biodegradable metal foils and polyanhydride packages. Monolithically integrating cells yields battery packs with sufficient power to operate conventional light emitting diodes and radio transmitters.

Concepts: Electrode, Anode, Light-emitting diode, Diode, Electronics, Radio, Transmitter, Transmitter power output


Electronic devices in the bedroom are broadly linked with poor sleep in adolescents. This study investigated whether there is a dose-response relationship between use of electronic devices (computers, cellphones, televisions and radios) in bed prior to sleep and adolescent sleep patterns.

Concepts: Vacuum tube, Sleep, Electronics, Radio, Sleep hygiene, Electronic engineering, Television, Transmitter


To compare prevalence and types of dispensing errors and pharmacists' labelling enhancements, for prescriptions transmitted electronically versus paper prescriptions.

Concepts: Medical prescription, Pharmacist, Electronics, Radio, Transmitter


Radio telemetry has been widely used to study the space use and movement behaviour of vertebrates, but transmitter sizes have only recently become small enough to allow tracking of insects under natural field conditions. Here, we review the available literature on insect telemetry using active (battery-powered) radio transmitters and compare this technology to harmonic radar and radio frequency identification (RFID) which use passive tags (i.e. without a battery). The first radio telemetry studies with insects were published in the late 1980s, and subsequent studies have addressed aspects of insect ecology, behaviour and evolution. Most insect telemetry studies have focused on habitat use and movement, including quantification of movement paths, home range sizes, habitat selection, and movement distances. Fewer studies have addressed foraging behaviour, activity patterns, migratory strategies, or evolutionary aspects. The majority of radio telemetry studies have been conducted outside the tropics, usually with beetles (Coleoptera) and crickets (Orthoptera), but bees (Hymenoptera), dobsonflies (Megaloptera), and dragonflies (Odonata) have also been radio-tracked. In contrast to the active transmitters used in radio telemetry, the much lower weight of harmonic radar and RFID tags allows them to be used with a broader range of insect taxa. However, the fixed detection zone of a stationary radar unit (< 1 km diameter) and the restricted detection distance of RFID tags (usually < 1-5 m) constitute major constraints of these technologies compared to radio telemetry. Most of the active transmitters in radio telemetry have been applied to insects with a body mass exceeding 1 g, but smaller species in the range 0.2-0.5 g (e.g. bumblebees and orchid bees) have now also been tracked. Current challenges of radio-tracking insects in the field are related to the constraints of a small transmitter, including short battery life (7-21 days), limited tracking range on the ground (100-500 m), and a transmitter weight that sometimes approaches the weight of a given insect (the ratio of tag mass to body mass varies from 2 to 100%). The attachment of radio transmitters may constrain insect behaviour and incur significant energetic costs, but few studies have addressed this in detail. Future radio telemetry studies should address (i) a larger number of species from different insect families and functional groups, (ii) a better coverage of tropical regions, (iii) intraspecific variability between sexes, ages, castes, and individuals, and (iv) a larger tracking range via aerial surveys with helicopters and aeroplanes equipped with external antennae. Furthermore, field and laboratory studies, including observational and experimental approaches as well as theoretical modelling, could help to clarify the behavioural and energetic consequences of transmitter attachment. Finally, the development of commercially available systems for automated tracking and potential future options of insect telemetry from space will provide exciting new avenues for quantifying movement and space use of insects from local to global spatial scales.

Concepts: Insect, Battery, Bee, Radio, Radar, Broadcasting, Transmitter, RFID


A total of 58 American beavers ( Castor canadensis) was immobilized with butorphanol, azaperone, and medetomidine (BAM) for the purpose of health assessments, sex determination, and placement of very high-frequency tail transmitters in a subset of animals. Isoflurane gas anesthesia was available to aid with induction when needed, and all animals received supplementary oxygen. Thirty-one beavers immobilized with a mean (SD) dose of 0.65 (0.15) mg/kg butorphanol, 0.22 (0.05) mg/kg azaperone, and 0.26 (0.06) mg/kg medetomidine did not require supplemental isoflurane during induction and the mean induction time was 8 min (range: 3-21 min). This dose was equivalent to 0.024 (0.005) mL of BAM per kilogram. A total of 29 beavers that was immobilized with a mean (SD) of 0.51 (0.07) mg/kg butorphanol, 0.17 (0.02) mg/kg azaperone, and 0.2 (0.03) mg/kg medetomidine needed supplementary isoflurane at 5% and 5 L/min for <1 min to induce full anesthesia. In none of the beavers did BAM alone provide sufficient depth of anesthesia to drill a hole in the tail for transmitter placement, and supplementary isoflurane was administered to reach a sufficient level of analgesia for the procedure. The beavers were reversed with 5 mg of atipamezole per milligram of medetomidine and 1 mg of naltrexone per milligram of butorphanol. No adverse effects or mortalities were observed. Butorphanol-azaperone-medetomidine can be considered safe for use in American beavers for minor procedures.

Concepts: Opioid, Natural number, Beaver, Transmitter, Beavers, Fur trade, North American Beaver, Medetomidine


In order to realize reliable Vehicle-to-Vehicle (V2V) communication systems for autonomous driving, the recognition of radio propagation becomes an important technology. However, in the current wireless distributed network systems, it is difficult to accurately estimate the radio propagation characteristics because of the locality of the radio propagation caused by surrounding buildings and geographical features. In this paper, we propose a measurement-based radio environment database for improving the accuracy of the radio environment estimation in the V2V communication systems. The database first gathers measurement datasets of the received signal strength indicator (RSSI) related to the transmission/reception locations from V2V systems. By using the datasets, the average received power maps linked with transmitter and receiver locations are generated. We have performed measurement campaigns of V2V communications in the real environment to observe RSSI for the database construction. Our results show that the proposed method has higher accuracy of the radio propagation estimation than the conventional path loss model-based estimation.

Concepts: Thermodynamics, Communication, Radio, Radar, Broadcasting, Transmitter, Telecommunication, Receiver