SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Transmission and infection of H5N1

358

Highly pathogenic avian H5N1 influenza A viruses occasionally infect humans, but currently do not transmit efficiently among humans. The viral haemagglutinin (HA) protein is a known host-range determinant as it mediates virus binding to host-specific cellular receptors. Here we assess the molecular changes in HA that would allow a virus possessing subtype H5 HA to be transmissible among mammals. We identified a reassortant H5 HA/H1N1 virus-comprising H5 HA (from an H5N1 virus) with four mutations and the remaining seven gene segments from a 2009 pandemic H1N1 virus-that was capable of droplet transmission in a ferret model. The transmissible H5 reassortant virus preferentially recognized human-type receptors, replicated efficiently in ferrets, caused lung lesions and weight loss, but was not highly pathogenic and did not cause mortality. These results indicate that H5 HA can convert to an HA that supports efficient viral transmission in mammals; however, we do not know whether the four mutations in the H5 HA identified here would render a wholly avian H5N1 virus transmissible. The genetic origin of the remaining seven viral gene segments may also critically contribute to transmissibility in mammals. Nevertheless, as H5N1 viruses continue to evolve and infect humans, receptor-binding variants of H5N1 viruses with pandemic potential, including avian-human reassortant viruses as tested here, may emerge. Our findings emphasize the need to prepare for potential pandemics caused by influenza viruses possessing H5 HA, and will help individuals conducting surveillance in regions with circulating H5N1 viruses to recognize key residues that predict the pandemic potential of isolates, which will inform the development, production and distribution of effective countermeasures.

Concepts: Virus, Influenza A virus subtype H5N1, Pandemic, Transmission and infection of H5N1, 2009 flu pandemic, Influenza pandemic, Avian influenza, Influenza

252

The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

Concepts: DNA, Transmission and infection of H5N1, Human flu, Pandemic, Protein, Avian influenza, Influenza pandemic, Influenza

180

BACKGROUND: Celiac disease is defined as a ‘chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals’. Sweden has experienced an “epidemic” of celiac disease in children below two years of age. Celiac disease etiology is considered multifactorial; however, little is known regarding potential risk- or protecting factors. We present data on the possible association between early infectious episodes and celiac disease, including their possible contribution to the Swedish celiac disease epidemic. METHODS: A population-based incident case-referent study (475 cases, 950 referents) with exposure information obtained via a questionnaire (including family characteristics, infant feeding, and the child’s general health) was performed. Celiac disease cases were diagnosed before two years of age, fulfilling the diagnostic criteria of the European Society for Pediatric Gastroenterology, Hepatology and Nutrition. Referents were randomly selected from the national population register after fulfilling matching criteria. The final analyses included 954 children, 373 (79%) cases and 581 (61%) referents, with complete information on main variables of interest in a matched set of one case with one or two referents. RESULTS: Having three or more parental-reported infectious episodes, regardless of type of infection, during the first six months of life was associated with a significantly increased risk for later celiac disease, and this remained after adjusting for infant feeding and socioeconomic status (odds ratio [OR] 1.5; 95% confidence interval [CI], 1.1-2.0; P=0.014). The celiac disease risk increased synergistically if, in addition to having several infectious episodes, infants were introduced to dietary gluten in large amounts, compared to small or medium amounts, after breastfeeding was discontinued (OR 5.6; 95% CI, 3.1-10; P<0.001). CONCLUSION: This study suggests that having repeated infectious episodes early in life increases the risk for later celiac disease. In addition, we found a synergistic effect between early infections and daily amount of gluten intake, more pronounced among infants for whom breastfeeding had been discontinued prior to gluten introduction. Regarding contribution to the Swedish celiac disease epidemic, which partly was attributed to concurrent changes in infant feeding, early infections probably made a minor contribution via the synergistic effect with gluten amount.

Concepts: Transmission and infection of H5N1, Medicine, Infant, Epidemiology, Coeliac disease, Nutrition, Infection, Infectious disease

177

Lévy flights are scale-free (fractal) search patterns found in a wide range of animals. They can be an advantageous strategy promoting high encounter rates with rare cues that may indicate prey items, mating partners or navigational landmarks. The robustness of this behavioural strategy to ubiquitous threats to animal performance, such as pathogens, remains poorly understood. Using honeybees radar-tracked during their orientation flights in a novel landscape, we assess for the first time how two emerging infectious diseases (Nosema sp. and the Varroa-associated Deformed wing virus (DWV)) affect bees' behavioural performance and search strategy. Nosema infection, unlike DWV, affected the spatial scale of orientation flights, causing significantly shorter and more compact flights. However, in stark contrast to disease-dependent temporal fractals, we find the same prevalence of optimal Lévy flight characteristics (μ ≈ 2) in both healthy and infected bees. We discuss the ecological and evolutionary implications of these surprising insights, arguing that Lévy search patterns are an emergent property of fundamental characteristics of neuronal and sensory components of the decision-making process, making them robust against diverse physiological effects of pathogen infection and possibly other stressors.

Concepts: Transmission and infection of H5N1, Bacteria, Emergence, Honey bee, Microbiology, Infectious disease, Disease, Infection

170

The unprecedented scale of the Ebola outbreak in Western Africa (2014-2015) has prompted an explosion of efforts to understand the transmission dynamics of the virus and to analyze the performance of possible containment strategies. Models have focused primarily on the reproductive numbers of the disease that represent the average number of secondary infections produced by a random infectious individual. However, these population-level estimates may conflate important systematic variation in the number of cases generated by infected individuals, particularly found in spatially localized transmission and superspreading events. Although superspreading features prominently in first-hand narratives of Ebola transmission, its dynamics have not been systematically characterized, hindering refinements of future epidemic predictions and explorations of targeted interventions. We used Bayesian model inference to integrate individual-level spatial information with other epidemiological data of community-based (undetected within clinical-care systems) cases and to explicitly infer distribution of the cases generated by each infected individual. Our results show that superspreaders play a key role in sustaining onward transmission of the epidemic, and they are responsible for a significant proportion ([Formula: see text]61%) of the infections. Our results also suggest age as a key demographic predictor for superspreading. We also show that community-based cases may have progressed more rapidly than those notified within clinical-care systems, and most transmission events occurred in a relatively short distance (with median value of 2.51 km). Our results stress the importance of characterizing superspreading of Ebola, enhance our current understanding of its spatiotemporal dynamics, and highlight the potential importance of targeted control measures.

Concepts: Inference, West Africa, Logic, Africa, Transmission and infection of H5N1, Infectious disease, Infection, Epidemiology

165

BACKGROUND: The prevalence of infection with the three common soil-transmitted helminths (i.e. Ascaris lumbricoides, Trichuris trichiura and hookworm) in Bolivia is among the highest in Latin America. However, the spatial distribution and burden of soil-transmitted helminthiasis are poorly documented. METHODS: We analysed historical survey data using Bayesian geostatistical models to identify determinants of the distribution of soil-transmitted helminth infections, predict the geographical distribution of infection risk, and assess treatment needs and costs in the frame of preventive chemotherapy. Rigorous geostatistical variable selection identified the most important predictors of A. lumbricoides, T. trichiura and hookworm transmission. RESULTS: Results show that precipitation during the wettest quarter above 400 mm favours the distribution of A. lumbricoides. Altitude has a negative effect on T. trichiura. Hookworm is sensitive to temperature during the coldest month. We estimate that 38.0%, 19.3% and 11.4% of the Bolivian population is infected with A. lumbricoides, T. trichiura and hookworm, respectively. Assuming independence of the infections, 48.4% of the population is infected with any soil-transmitted helminth. Empirical-based estimates, according to treatment recommendations by the World Health Organization, suggest a total of 2.9 million annualised treatments for the control of soil-transmitted helminthiasis in Bolivia. CONCLUSIONS: We provide estimates of soil-transmitted helminth infections in Bolivia based on high-resolution spatial prediction and an innovative variable selection approach. However, the scarcity of the data suggests that a national survey is required for more accurate mapping that will govern spatial targeting of soil-transmitted helminthiasis control.

Concepts: Transmission and infection of H5N1, Whipworm, Prediction, Infection, Nematodes, Parasitic animals, Parasitic worm, Hookworm

154

HIV-1 infection is enhanced by adhesive structures that form between infected and uninfected T cells called virological synapses (VSs). This mode of transmission results in the frequent co-transmission of multiple copies of HIV-1 across the VS, which can reduce sensitivity to antiretroviral drugs. Studying HIV-1 infection of humanized mice, we measured the frequency of co-transmission and the spatiotemporal organization of infected cells as indicators of cell-to-cell transmission in vivo. When inoculating mice with cells co-infected with two viral genotypes, we observed high levels of co-transmission to target cells. Additionally, micro-anatomical clustering of viral genotypes within lymphoid tissue indicates that viral spread is driven by local processes and not a diffuse viral cloud. Intravital splenic imaging reveals that anchored HIV-infected cells induce arrest of interacting, uninfected CD4(+) T cells to form Env-dependent cell-cell conjugates. These findings suggest that HIV-1 spread between immune cells can be anatomically localized into infectious clusters.

Concepts: Organ, Immune system, Transmission and infection of H5N1, Infection, White blood cell, Spleen, Lymphatic system, HIV

153

Chlamydia trachomatis is an important human pathogen that replicates inside the infected host cell in a unique vacuole, the inclusion. The formation of this intracellular bacterial niche is essential for productive Chlamydia infections. Despite its importance for Chlamydia biology, a holistic view on the protein composition of the inclusion, including its membrane, is currently missing. Here we describe the host cell-derived proteome of isolated C. trachomatis inclusions by quantitative proteomics. Computational analysis indicated that the inclusion is a complex intracellular trafficking platform that interacts with host cells' antero- and retrograde trafficking pathways. Furthermore, the inclusion is highly enriched for sorting nexins of the SNX-BAR retromer, a complex essential for retrograde trafficking. Functional studies showed that in particular, SNX5 controls the C. trachomatis infection and that retrograde trafficking is essential for infectious progeny formation. In summary, these findings suggest that C. trachomatis hijacks retrograde pathways for effective infection.

Concepts: Chlamydiaceae, Transmission and infection of H5N1, Chlamydia trachomatis, Chlamydia, Chlamydiae, Infection, Chlamydia suis, Bacteria

153

The American brine shrimp Artemia franciscana is invasive in the Mediterranean region where it has displaced native species (the sexual A. salina, and the clonal A. parthenogenetica) from many salt pond complexes. Artemia populations are parasitized by numerous avian cestodes whose effects have been studied in native species. We present a study from the Ebro Delta salterns (NE Spain), in a salt pond where both A. franciscana and native A. salina populations coexist, providing a unique opportunity to compare the parasite loads of the two sexual species in syntopy. The native species had consistently higher infection parameters, largely because the dominant cestode in A. salina adults and juveniles (Flamingolepis liguloides) was much rarer in A. franciscana. The most abundant cestodes in the alien species were Eurycestus avoceti (in adults) and Flamingolepis flamingo (in juveniles). The abundance of E. avoceti and F. liguloides was higher in the A. franciscana population syntopic with A. salina than in a population sampled at the same time in another pond where the native brine shrimp was absent, possibly because the native shrimp provides a better reservoir for parasite circulation. Infection by cestodes caused red colouration in adult and juvenile A. salina, and also led to castration in a high proportion of adult females. Both these effects were significantly stronger in the native host than in A. franciscana with the same parasite loads. However, for the first time, significant castration effects (for E. avoceti and F. liguloides) and colour change (for six cestode species) were observed in infected A. franciscana. Avian cestodes are likely to help A. franciscana outcompete native species. At the same time, they are likely to reduce the production of A. franciscana cysts in areas where they are harvested commercially.

Concepts: Cestoda, Transmission and infection of H5N1, Arthropod, Brine shrimp, Crustacean

141

Background Infection of poultry with influenza A subtype H7 viruses occurs worldwide, but the introduction of this subtype to humans in Asia has not been observed previously. In March 2013, three urban residents of Shanghai or Anhui, China, presented with rapidly progressing lower respiratory tract infections and were found to be infected with a novel reassortant avian-origin influenza A (H7N9) virus. Methods We obtained and analyzed clinical, epidemiologic, and virologic data from these patients. Respiratory specimens were tested for influenza and other respiratory viruses by means of real-time reverse-transcriptase-polymerase-chain-reaction assays, viral culturing, and sequence analyses. Results A novel reassortant avian-origin influenza A (H7N9) virus was isolated from respiratory specimens obtained from all three patients and was identified as H7N9. Sequencing analyses revealed that all the genes from these three viruses were of avian origin, with six internal genes from avian influenza A (H9N2) viruses. Substitution Q226L (H3 numbering) at the 210-loop in the hemagglutinin (HA) gene was found in the A/Anhui/1/2013 and A/Shanghai/2/2013 virus but not in the A/Shanghai/1/2013 virus. A T160A mutation was identified at the 150-loop in the HA gene of all three viruses. A deletion of five amino acids in the neuraminidase (NA) stalk region was found in all three viruses. All three patients presented with fever, cough, and dyspnea. Two of the patients had a history of recent exposure to poultry. Chest radiography revealed diffuse opacities and consolidation. Complications included acute respiratory distress syndrome and multiorgan failure. All three patients died. Conclusions Novel reassortant H7N9 viruses were associated with severe and fatal respiratory disease in three patients. (Funded by the National Basic Research Program of China and others.).

Concepts: Avian influenza, Pulmonology, DNA, Infection, Acute respiratory distress syndrome, Transmission and infection of H5N1, Virus, Influenza