Discover the most talked about and latest scientific content & concepts.

Concept: Translocase of the outer membrane


Neuronal loss in Parkinson’s disease (PD) is associated with aberrant mitochondrial function and impaired proteostasis. Identifying the mechanisms that link these pathologies is critical to furthering our understanding of PD pathogenesis. Using human pluripotent stem cells (hPSCs) that allow comparison of cells expressing mutant SNCA (encoding α-synuclein (α-syn)) with isogenic controls, or SNCA-transgenic mice, we show that SNCA-mutant neurons display fragmented mitochondria and accumulate α-syn deposits that cluster to mitochondrial membranes in response to exposure of cardiolipin on the mitochondrial surface. Whereas exposed cardiolipin specifically binds to and facilitates refolding of α-syn fibrils, prolonged cardiolipin exposure in SNCA-mutants initiates recruitment of LC3 to the mitochondria and mitophagy. Moreover, we find that co-culture of SNCA-mutant neurons with their isogenic controls results in transmission of α-syn pathology coincident with mitochondrial pathology in control neurons. Transmission of pathology is effectively blocked using an anti-α-syn monoclonal antibody (mAb), consistent with cell-to-cell seeding of α-syn.

Concepts: Alzheimer's disease, Neuron, Bacteria, Mitochondrion, Stem cell, Cell biology, Cytoplasm, Translocase of the outer membrane


Innate immunity to viruses involves receptors such as RIG-I, which senses viral RNA and triggers an IFN-β signaling pathway involving the outer mitochondrial membrane protein MAVS. However, the functional status of MAVS phosphorylation remains elusive.

Concepts: DNA, Protein, Signal transduction, Metabolism, Virus, Innate immune system, Cell biology, Translocase of the outer membrane


The voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT) have central roles in mitochondrial functions such as nucleotides transport and cell death. The interaction between VDAC, an outer mitochondrial membrane protein and ANT, an inner membrane protein, was studied in isolated mitochondria and in vitro. Both proteins were isolated from various mitochondrial sources and reconstituted in vitro using a biomimetic system composed of recombinant human VDAC isoform 1 (rhVDAC1) immobilized on a surface plasmon resonance (SPR) sensor chip surface. Two enriched-preparations of (H)ANT (ANT from heart, mainly ANT1) and (L)ANT (ANT from liver, mainly ANT2) isoforms interacted differently with rhVDAC1. Moreover, the pharmacological ANT inhibitors atractyloside and bongkrekic acid modulated this interaction. Thus, ANT-VDAC interaction depends both on ANT isoform identity and on the conformation of ANT.

Concepts: DNA, Cell, Metabolism, Adenosine triphosphate, Mitochondrion, Cytoplasm, Citric acid cycle, Translocase of the outer membrane


In addition to established membrane remodeling roles in various cellular locations, actin has recently emerged as a participant in mitochondrial fission. However, the underlying mechanisms of its participation remain largely unknown. We report that transient de novo F-actin assembly on the mitochondria occurs upon induction of mitochondrial fission and F-actin accumulates on the mitochondria without forming detectable submitochondrial foci. Impairing mitochondrial division through Drp1 knockout or inhibition prolonged the time of mitochondrial accumulation of F-actin and also led to abnormal mitochondrial accumulation of the actin regulatory factors cortactin, cofilin, and Arp2/3 complexes, suggesting that disassembly of mitochondrial F-actin depends on Drp1 activity. Furthermore, down-regulation of actin regulatory proteins led to elongation of mitochondria, associated with mitochondrial accumulation of Drp1. In addition, depletion of cortactin inhibited Mfn2 down-regulation- or FCCP-induced mitochondrial fragmentation. These data indicate that the dynamic assembly and disassembly of F-actin on the mitochondria participates in Drp1-mediated mitochondrial fission.

Concepts: Adenosine triphosphate, Eukaryote, Translocase of the outer membrane


Membrane proteins play key roles in biology. Determination of their structure in a membrane environment, however, is highly challenging. To address this challenge, we developed an approach that couples hydrogen/deuterium exchange of membrane proteins to rapid unfolding and detection by solution-state NMR spectroscopy. We show that the method allows analysis of the solvent protection of single residues in liposome-embedded proteins such as the 349-residue Tom40, the major protein translocation pore in the outer mitochondrial membrane, which has resisted structural analysis for many years.

Concepts: DNA, Protein, Oxygen, Cell, Metabolism, Cell biology, Translocase of the outer membrane


Missense mutations of valosin-containing protein (VCP) cause an autosomal dominant disease known as inclusion body myopathy, Paget disease with frontotemporal dementia (IBMPFD) and other neurodegenerative disorders. The pathological mechanism of IBMPFD is not clear and there is no treatment. We show that endogenous VCP negatively regulates Mitofusin, which is required for outer mitochondrial membrane fusion. Because 90% of IBMPFD patients have myopathy, we generated an in vivo IBMPFD model in adult Drosophila muscle, which recapitulates disease pathologies. We show that common VCP disease mutants act as hyperactive alleles with respect to regulation of Mitofusin. Importantly, VCP inhibitors suppress mitochondrial defects, muscle tissue damage and cell death associated with IBMPFD models in Drosophila. These inhibitors also suppress mitochondrial fusion and respiratory defects in IBMPFD patient fibroblasts. These results suggest that VCP disease mutants cause IBMPFD through a gain-of-function mechanism, and that VCP inhibitors have therapeutic value.

Concepts: DNA, Cell, Mutation, Metabolism, Cytoplasm, Neurology, Point mutation, Translocase of the outer membrane


Dnm1 and Fis1 are prototypical proteins that regulate yeast mitochondrial morphology by controlling fission, the dysregulation of which can result in developmental disorders and neurodegenerative diseases in humans. Loss of Dnm1 blocks the formation of fission complexes and leads to elongated mitochondria in the form of interconnected networks, while overproduction of Dnm1 results in excessive mitochondrial fragmentation. In the current model, Dnm1 is essentially a GTP hydrolysis-driven molecular motor that self-assembles into ring-like oligomeric structures that encircle and pinch the outer mitochondrial membrane at sites of fission. In this work, we use machine learning and synchrotron small-angle X-ray scattering (SAXS) to investigate whether the motor Dnm1 can synergistically facilitate mitochondrial fission by membrane remodeling. A support vector machine (SVM)-based classifier trained to detect sequences with membrane-restructuring activity identifies a helical Dnm1 domain capable of generating negative Gaussian curvature (NGC), the type of saddle-shaped local surface curvature found on scission necks during fission events. Furthermore, this domain is highly conserved in Dnm1 homologues with fission activity. Synchrotron SAXS measurements reveal that Dnm1 restructures membranes into phases rich in NGC, and is capable of inducing a fission neck with a diameter of 12.6 nm. Through in silico mutational analysis, we find that the helical Dnm1 domain is locally optimized for membrane curvature generation, and phylogenetic analysis suggests that dynamin superfamily proteins that are close relatives of human dynamin Dyn1 have evolved the capacity to restructure membranes via the induction of curvature mitochondrial fission. In addition, we observe that Fis1, an adaptor protein, is able to inhibit the pro-fission membrane activity of Dnm1, which points to the antagonistic roles of the two proteins in the regulation of mitochondrial fission.

Concepts: DNA, Cell, Bacteria, Metabolism, Cytoplasm, Citric acid cycle, Translocase of the outer membrane, Gaussian curvature


The etiology of Parkinson’s disease (PD) converges on a common pathogenic pathway of mitochondrial defects in which α-Synuclein (αSyn) is thought to play a role. However, the mechanisms by which αSyn and its disease-associated allelic variants cause mitochondrial dysfunction remain unknown. Here, we analyzed mitochondrial axonal transport and morphology in human-derived neurons overexpressing wild-type (WT) αSyn or the mutated variants A30P or A53T, which are known to have differential lipid affinities. A53T αSyn was enriched in mitochondrial fractions, inducing significant mitochondrial transport defects and fragmentation, while milder defects were elicited by WT and A30P. We found that αSyn-mediated mitochondrial fragmentation was linked to expression levels in WT and A53T variants. Targeted delivery of WT and A53T αSyn to the outer mitochondrial membrane further increased fragmentation, whereas A30P did not. Genomic editing to disrupt the N-terminal domain of αSyn, which is important for membrane association, resulted in mitochondrial elongation without changes in fusion-fission protein levels, suggesting that αSyn plays a direct physiological role in mitochondrial size maintenance. Thus, we demonstrate that the association of αSyn with the mitochondria, which is modulated by protein mutation and dosage, influences mitochondrial transport and morphology, highlighting its relevance in a common pathway impaired in PD.

Concepts: Alzheimer's disease, DNA, Mutation, Metabolism, Mitochondrion, Mitochondrial DNA, N-terminus, Translocase of the outer membrane


An increasing body of evidence points to mitochondrial dysfunction as a contributor to the molecular pathogenesis of neurodegenerative diseases such as Parkinson’s disease. Recent studies of the Parkinson’s disease associated genes PINK1 (ref. 2) and parkin (PARK2, ref. 3) indicate that they may act in a quality control pathway preventing the accumulation of dysfunctional mitochondria. Here we elucidate regulators that have an impact on parkin translocation to damaged mitochondria with genome-wide small interfering RNA (siRNA) screens coupled to high-content microscopy. Screening yielded gene candidates involved in diverse cellular processes that were subsequently validated in low-throughput assays. This led to characterization of TOMM7 as essential for stabilizing PINK1 on the outer mitochondrial membrane following mitochondrial damage. We also discovered that HSPA1L (HSP70 family member) and BAG4 have mutually opposing roles in the regulation of parkin translocation. The screens revealed that SIAH3, found to localize to mitochondria, inhibits PINK1 accumulation after mitochondrial insult, reducing parkin translocation. Overall, our screens provide a rich resource to understand mitochondrial quality control.

Concepts: DNA, Gene expression, Cell, Bacteria, Mitochondrion, RNA, RNA interference, Translocase of the outer membrane


Dominant optic atrophy (DOA) and axonal peripheral neuropathy (Charcot-Marie-Tooth type 2, or CMT2) are hereditary neurodegenerative disorders most commonly caused by mutations in the canonical mitochondrial fusion genes OPA1 and MFN2, respectively. In yeast, homologs of OPA1 (Mgm1) and MFN2 (Fzo1) work in concert with Ugo1, for which no human equivalent has been identified thus far. By whole-exome sequencing of patients with optic atrophy and CMT2, we identified four families with recessive mutations in SLC25A46. We demonstrate that SLC25A46, like Ugo1, is a modified carrier protein that has been recruited to the outer mitochondrial membrane and interacts with the inner membrane remodeling protein mitofilin (Fcj1). Loss of function in cultured cells and in zebrafish unexpectedly leads to increased mitochondrial connectivity, while severely affecting the development and maintenance of neurons in the fish. The discovery of SLC25A46 strengthens the genetic overlap between optic atrophy and CMT2 while exemplifying a new class of modified solute transporters linked to mitochondrial dynamics.

Concepts: Nervous system, DNA, Genetics, Cell, Mutation, Bacteria, Metabolism, Translocase of the outer membrane