SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Transferrin

240

Current treatment of anemia in chronic kidney disease (CKD) with erythropoiesis-stimulating agents can lead to substantial hemoglobin oscillations above target range and high levels of circulating erythropoietin. Vadadustat (AKB-6548), a novel, titratable, oral hypoxia-inducible factor prolyl hydroxylase inhibitor induces endogenous erythropoietin synthesis and enhances iron mobilization. In this 20-week, double-blind, randomized, placebo-controlled, phase 2b study, we evaluated the efficacy and safety of once-daily vadadustat in patients with stages 3a to 5 non-dialysis-dependent CKD. The primary endpoint was the percentage of patients who, during the last 2 weeks of treatment, achieved or maintained either a mean hemoglobin level of 11.0 g/dl or more or a mean increase in hemoglobin of 1.2 g/dl or more over the predose average. Significantly, the primary endpoint was met in 54.9% of patients on vadadustat and 10.3% of patients on placebo. Significant increases in both reticulocytes and total iron-binding capacity and significant decreases in both serum hepcidin and ferritin levels were observed in patients on vadadustat compared with placebo. The overall incidence of adverse events was comparable between the 2 groups. Serious adverse events occurred in 23.9% and 15.3% of the vadadustat- and placebo-treated patients, respectively. Three deaths occurred in the vadadustat arm. Thus, this phase 2b study demonstrated that vadadustat raised and maintained hemoglobin levels in a predictable and controlled manner while enhancing iron mobilization in patients with nondialysis-dependent CKD.

Concepts: Hemoglobin, Chronic kidney disease, Kidney, Erythropoietin, Red blood cell, Anemia, Transferrin, Ferritin

173

Background Intravenous (i.v.) iron can improve anaemia of chronic disease and response to erythropoiesis-stimulating agents (ESAs), but data on its use in practice and without ESAs are limited. This study evaluated effectiveness and tolerability of ferric carboxymaltose (FCM) in routine treatment of anaemic cancer patients. Patients and methods Of 639 patients enrolled in 68 haematology/oncology practices in Germany, 619 received FCM at the oncologist’s discretion, 420 had eligible baseline haemoglobin (Hb) measurements, and 364 at least one follow-up Hb measurement. Data of transfused patients were censored from analysis before transfusion. Results The median total iron dose was 1000 mg per patient (interquartile range 600-1500 mg). The median Hb increase was comparable in patients receiving FCM alone (1.4 g/dl [0.2-2.3 g/dl; N = 233]) or FCM + ESA (1.6 g/dl [0.7-2.4 g/dl; N = 46]). Patients with baseline Hb up to 11.0 g/dl and serum ferritin up to 500 ng/ml benefited from FCM treatment (stable Hb ≥11.0 g/dl). Also patients with ferritin >500 ng/ml but low transferrin saturation benefited from FCM treatment. FCM was well tolerated, 2.3% of patients reported putative drug-related adverse events. Conclusions The substantial Hb increase and stabilisation at 11-12 g/dl in FCM-treated patients suggest a role for i.v. iron alone in anaemia correction in cancer patients.

Concepts: Hemoglobin, Oncology, Iron, Interquartile range, Anemia, Iron deficiency anemia, Transferrin, Ferritin

171

The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC). Male Wistar rats were submitted to 5/6 nephrectomy (Nx) to induced CRF. An ionic-cyclic Gd (Gadoterate Meglumine) was administrated (1.5 mM/KgBW, intravenously) 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd- chelate administration: 1–Nx (n = 7); 2–Nx+NAC (n = 6); 3–Nx+Gd (n = 7); 4–Nx+NAC+Gd (4.8 g/L in drinking water), initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6). This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW), proteinuria (mg/24 hs), serum iron (µg/dL); serum ferritin (ng/mL); transferrin saturation (%), TIBC (µg/dL) and TBARS (nmles/ml). Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.

Concepts: Renal failure, Kidney, Nephrology, Dialysis, Renal function, Transferrin, Transferrin saturation, Serum iron

168

There is increasing evidence from clinical and population studies for a role of H. pylori infection in the aetiology of iron deficiency. Rodent models of Helicobacter infection are helpful for investigating any causal links and mechanisms of iron deficiency in the host. The aim of this study was to investigate the effects of gastric Helicobacter infection on iron deficiency and host iron metabolism/transport gene expression in hypergastrinemic INS-GAS mice. INS-GAS mice were infected with Helicobacter felis for 3, 6 and 9 months. At post mortem, blood was taken for assessment of iron status and gastric mucosa for pathology, immunohistology and analysis of gene expression. Chronic Helicobacter infection of INS- GAS mice resulted in decreased serum iron, transferrin saturation and hypoferritinemia and increased Total iron binding capacity (TIBC). Decreased serum iron concentrations were associated with a concomitant reduction in the number of parietal cells, strengthening the association between hypochlorhydria and gastric Helicobacter-induced iron deficiency. Infection with H. felis for nine months was associated with decreased gastric expression of iron metabolism regulators hepcidin, Bmp4 and Bmp6 but increased expression of Ferroportin 1, the iron efflux protein, iron absorption genes such as Divalent metal transporter 1, Transferrin receptor 1 and also Lcn2 a siderophore-binding protein. The INS-GAS mouse is therefore a useful model for studying Helicobacter-induced iron deficiency. Furthermore, the marked changes in expression of gastric iron transporters following Helicobacter infection may be relevant to the more rapid development of carcinogenesis in the Helicobacter infected INS-GAS model.

Concepts: Gene, Helicobacter pylori, Transferrin, Human iron metabolism, Transferrin saturation, Serum iron, Iron metabolism, Total iron-binding capacity

167

BACKGROUND Iron deficiency and iron deficiency anaemia are frequent problems in both the primary and the specialist health services. It is important to detect iron deficiency and to determine the causal relationship because iron deficiency may be secondary to a serious disease. The diagnosis of iron deficiency is largely based on biochemical and haematological laboratory findings, but there is no standardisation or consensus on the interpretation of these findings.METHOD Non-systematic search in the PubMed database with a discretionary selection of articles, based on the authors' knowledge of the field.RESULTS Ferritin measurement is the most important analysis in the study of iron deficiency, but there is no consensus on the diagnostic cut-off. It is usual in Norway today to use a ferritin level of < 12 - 20 μg/L, but at this low level the sensitivity for detecting iron deficiency is very low. A number of studies show that if the diagnostic cut-off is increased to the order of 30 μg/L the sensitivity is significantly higher for only a small reduction in specificity.INTERPRETATION When studying iron deficiency as a cause of anaemia, the diagnostic cut-off for detecting deficiency should be higher than that used today. The ferritin level increases with inflammation and ought in practice to be considered in conjunction with the CRP level. The level of transferrin receptor in plasma increases with iron deficiency without being influenced by inflammation and is therefore a good supplement to ferritin measurement. Measurement of iron, transferrin and transferrin saturation provides little information additional to that provided by ferritin in iron deficiency studies.

Concepts: Hemoglobin, Iron, Anemia, Hematology, Iron deficiency anemia, Transferrin, Serum iron, Iron metabolism

59

Tea interferes with iron absorption and can lead to iron deficiency anemia when consumed in large quantities. The rechallenge effect of green tea on anemia in a middle-aged man emphasizes the potential causal role of this beverage. Lifestyle and dietary habits are important diagnostic considerations in diseases of this type.

Concepts: Hemoglobin, Death, Iron, Iron deficiency anemia, Transferrin, Human iron metabolism

50

Iron deficiency causes long-term adverse consequences for children and is the most common nutritional deficiency worldwide. Observational studies suggest that iron deficiency anemia protects against Plasmodiumfalciparum malaria and several intervention trials have indicated that iron supplementation increases malaria risk through unknown mechanism(s). This poses a major challenge for health policy. We investigated how anemia inhibits blood stage malaria infection and how iron supplementation abrogates this protection.

Concepts: Immune system, Hemoglobin, Malaria, Plasmodium falciparum, Red blood cell, Iron deficiency anemia, Sickle-cell disease, Transferrin

28

The iron regulatory hormone hepcidin responds to both oral and parenteral iron. Here, we hypothesized that the diverse iron trafficking routes may affect the dynamics and kinetics of the hepcidin activation pathway. To address this, C57BL/6 mice were administered an iron-enriched diet or injected i.p. with iron dextran and analyzed over time. After 1 week of dietary loading with carbonyl iron, mice exhibited significant increases in serum iron and transferrin saturation, as well as in hepatic iron, Smad1/5/8 phosphorylation and bone morphogenetic protein 6 (BMP6), and hepcidin mRNAs. Nevertheless, hepcidin expression reached a plateau afterward, possibly due to upregulation of inhibitory Smad7, Id1, and matriptase-2 mRNAs, while hepatic and splenic iron continued to accumulate over 9 weeks. One day following parenteral administration of iron dextran, mice manifested elevated serum and hepatic iron levels and Smad1/5/8 phosphorylation, but no increases in transferrin saturation or BMP6 mRNA. Surprisingly, hepcidin failed to appropriately respond to acute overload with iron dextran, and a delayed (after 5-7 days) hepcidin upregulation correlated with increased transferrin saturation, partial relocation of iron from macrophages to hepatocytes, and induction of BMP6 mRNA. Our data suggest that the physiological hepcidin response is saturable and are consistent with the idea that hepcidin senses exclusively iron compartmentalized within circulating transferrin and/or hepatocytes.

Concepts: Protein, Iron, Iron deficiency anemia, Transferrin, Human iron metabolism, Iron deficiency, Serum iron, Iron metabolism

28

AIMS: Acute Helicobacter pylori infection is associated with transient hypochlorhydria. In H pylori-associated atrophy, hypochlorhydria has a role in iron deficiency (ID) through changes in the physiology of iron-complex absorption. The aims were to evaluate the association between H pylori-associated hypochlorhydria and ID in children. METHODS: Symptomatic children (n=123) were prospectively enrolled. Blood, gastric juice and gastric biopsies were taken, respectively, for haematological analyses, pH assessment and H pylori determination, and duodenal biopsies for exclusion of coeliac disease. Stool samples were collected for parasitology/microbiology. Thirteen children were excluded following parasitology and duodenal histopathology, and five due to impaired blood analysis. RESULTS: Ten children were hypochlorhydric (pH>4) and 33 were H pylori positive. In H pylori-positive children with pH>4 (n=6) serum iron and transferrin saturation levels % were significantly lower (p<0.01) than H pylori-positive children with pH≤4. No differences in ferritin, or total iron binding capacity, were observed. In H pylori-negative children with pH>4, iron and transferrin saturation were not significantly different from children with pH≤4. CONCLUSIONS: Low serum iron and transferrin in childhood H pylori infection is associated with hypochlorhydria. In uninfected children, hypochlorhydria was not associated with altered serum iron parameters, indicating a combination of H pylori infection and/or inflammation, and hypochlorhydria has a role in the aetiology of ID. Although H pylori-associated hypochlorhydria is transient during acute gastritis, this alters iron homeostasis with clinical impact in developing countries with a high H pylori prevalence.

Concepts: Gastroenterology, Stomach, Helicobacter pylori, Iron deficiency anemia, Gastritis, Transferrin, Transferrin saturation, Total iron-binding capacity

28

Anemia often complicates the course of Inflammatory Bowel Disease (IBD). Hepcidin, a liver-produced peptide hormone, is a key mediator of anemia of chronic disease (ACD). We hypothesized that hepcidin is significantly elevated in anemic CD patients and that hepcidin may cause iron restriction and, therefore, mediate ACD. METHODS: We enrolled 17 patients with CD and ACD recruited from the Cedars-Sinai IBD Center. Routine blood tests included hemoglobin (Hgb), hematocrit, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Anemia was defined as hemoglobin <12g/dL and <13.5g/dL, in men and women, respectively. ACD was diagnosed on the basis of a combination of the following: a) normal or elevated ferritin b) lowered serum iron and total iron binding capacity and c) normal percent iron saturation. Serum and urine hepcidin, as well as IL-6 levels were also measured. Patients with documented iron-deficiency anemia were excluded. RESULTS: There was an excellent correlation between urine (expressed as ng/mg of creatinine) and serum hepcidin levels expressed as ng/ml (r=0.853, p<0.001). We also found a strong positive correlation between serum hepcidin and ferritin levels (r=0.723, p=0.0015). There was a positive correlation between serum hepcidin and IL-6 levels (r=0.546, p=0.023). We found a strong negative correlation between serum hepcidin concentrations and Hgb levels (r=0.528, p=0.029). CONCLUSION: We demonstrate that ACD in CD is characterized by high serum IL-6 and hepcidin levels, which negatively correlate with Hgb levels. Our data support the hypothesis that IL-6-driven hepcidin production mediates ACD in patients with CD.

Concepts: Hemoglobin, Red blood cell, Anemia, Inflammatory bowel disease, Iron deficiency anemia, Transferrin, Ferritin, Total iron-binding capacity