SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Transfer RNA

172

A report on the Keystone symposium ‘Non-coding RNAs’ held at Snowbird, Utah, USA, 31 March to 5 April 2012.

Concepts: DNA, RNA, Non-coding RNA, Transfer RNA, Long noncoding RNA, Xist

171

Recent genome-wide computational screens that search for conservation of RNA secondary structure in whole genome alignments (WGAs) have predicted thousands of structural noncoding RNAs (ncRNAs). The sensitivity of such approaches, however, is limited due to their reliance on sequence-based whole-genome aligners, which regularly misalign structural ncRNAs. This suggests that many more structural ncRNAs may remain undetected. Structure-based alignment, which could increase the sensitivity, has been prohibitive for genome-wide screens due to its extreme computational costs. Breaking this barrier, we present the pipeline REAPR (RE-Alignment for Prediction of structural ncRNA), which efficiently realigns whole genomes based on RNA sequence and structure, thus allowing us to boost the performance of de novo ncRNA predictors, such as RNAz. Key to the pipeline’s efficiency is the development of a novel banding technique for multiple RNA alignment. REAPR significantly outperforms the widely-used predictors RNAz and EvoFold in genome-wide screens; in direct comparison to the most recent RNAz screen on D. melanogaster, REAPR predicts twice as many high-confidence ncRNA candidates. Moreover, modEncode RNA-Seq experiments confirm a substantial number of its predictions as transcripts. REAPR’s advancement of de novo structural characterization of ncRNAs complements the identification of transcripts from rapidly accumulating RNA-Seq data.

Concepts: DNA, Gene, Genome, RNA, Prediction, Non-coding RNA, Transfer RNA, Long noncoding RNA

152

Although the chemopreventive effects of aspirin have been extensively investigated, the roles of many cell components, such as long non-coding RNAs, in these effects are still not completely understood.

Concepts: DNA, RNA, Ribosomal RNA, Non-coding RNA, RNA splicing, Transfer RNA, Long noncoding RNA, Xist

52

Many steps in the evolution of cellular life are still mysterious. We suggest that the ribosome may represent one important missing link between compositional (or metabolism-first), RNA-world (or genes-first) and cellular (last universal common ancestor) approaches to the evolution of cells. We present evidence that the entire set of transfer RNAs for all twenty amino acids are encoded in both the 16S and 23S rRNAs of Escherichia coli K12; that nucleotide sequences that could encode key fragments of ribosomal proteins, polymerases, ligases, synthetases, and phosphatases are to be found in each of the six possible reading frames of the 16S and 23S rRNAs; and that every sequence of bases in rRNA has information encoding more than one of these functions in addition to acting as a structural component of the ribosome. Ribosomal RNA, in short, is not just a structural scaffold for proteins, but the vestigial remnant of a primordial genome that may have encoded a self-organizing, self-replicating, auto-catalytic intermediary between macromolecules and cellular life.

Concepts: Protein, Gene, Bacteria, Amino acid, RNA, Ribosomal RNA, Ribosome, Transfer RNA

50

Circular RNAs (circRNAs) are abundant and evolutionarily conserved RNAs of largely unknown function. Here, we show that a subset of circRNAs is translated in vivo. By performing ribosome footprinting from fly heads, we demonstrate that a group of circRNAs is associated with translating ribosomes. Many of these ribo-circRNAs use the start codon of the hosting mRNA, are bound by membrane-associated ribosomes, and have evolutionarily conserved termination codons. In addition, we found that a circRNA generated from the muscleblind locus encodes a protein, which we detected in fly head extracts by mass spectrometry. Next, by performing in vivo and in vitro translation assays, we show that UTRs of ribo-circRNAs (cUTRs) allow cap-independent translation. Moreover, we found that starvation and FOXO likely regulate the translation of a circMbl isoform. Altogether, our study provides strong evidence for translation of circRNAs, revealing the existence of an unexplored layer of gene activity.

Concepts: DNA, Protein, Gene, RNA, Ribosome, Protein biosynthesis, Genetic code, Transfer RNA

39

Translation arrest by polybasic sequences induces ribosome stalling, and the arrest product is degraded by the ribosome-mediated quality control (RQC) system. Here we report that ubiquitination of the 40S ribosomal protein uS10 by the E3 ubiquitin ligase Hel2 (or RQT1) is required for RQC. We identify a RQC-trigger (RQT) subcomplex composed of the RNA helicase-family protein Slh1/Rqt2, the ubiquitin-binding protein Cue3/Rqt3, and yKR023W/Rqt4 that is required for RQC. The defects in RQC of the RQT mutants correlate with sensitivity to anisomycin, which stalls ribosome at the rotated form. Cryo-electron microscopy analysis reveals that Hel2-bound ribosome are dominantly the rotated form with hybrid tRNAs. Ribosome profiling reveals that ribosomes stalled at the rotated state with specific pairs of codons at P-A sites serve as RQC substrates. Rqt1 specifically ubiquitinates these arrested ribosomes to target them to the RQT complex, allowing subsequent RQC reactions including dissociation of the stalled ribosome into subunits.Several protein quality control mechanisms are in place to trigger the rapid degradation of aberrant polypeptides and mRNAs. Here the authors describe a mechanism of ribosome-mediated quality control that involves the ubiquitination of ribosomal proteins by the E3 ubiquitin ligase Hel2/RQT1.

Concepts: Protein, Gene, Amino acid, RNA, Ribosome, Messenger RNA, Ubiquitin, Transfer RNA

32

MicroRNAs (miRNAs) induce messenger RNA (mRNA) degradation and repress mRNA translation. Several miRNAs control the expression of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC). The BDNF signaling pathway is activated by moderate intake of alcohol to prevent escalation to excessive drinking. Here, we present data to suggest that the transition from moderate to uncontrolled alcohol intake occurs, in part, upon a breakdown of this endogenous protective pathway via a miRNA-dependent mechanism. Specifically, a mouse paradigm that mimics binge alcohol drinking in humans produced a robust reduction in BDNF mRNA levels in the medial PFC (mPFC), which was associated with increased expression of several miRNAs including miR-30a-5p. We show that miR-30a-5p binds the 3' untranslated region of BDNF, and that overexpression of miR-30a-5p in the mPFC decreased BDNF expression. Importantly, overexpression of miR-30a-5p in the mPFC produced an escalation of alcohol intake and a preference over water. Conversely, inhibition of miR-30a-5p in the mPFC using a Locked Nucleic Acid sequence that targets miR-30a-5p restored BDNF levels and decreased excessive alcohol intake. Together, our results indicate that miR-30a-5p plays a key role in the transition from moderate to excessive alcohol intake.Molecular Psychiatry advance online publication, 21 October 2014; doi:10.1038/mp.2014.120.

Concepts: DNA, Gene expression, Transcription, RNA, MicroRNA, Messenger RNA, Brain-derived neurotrophic factor, Transfer RNA

31

Synonymous single nucleotide polymorphisms (sSNPs) are considered neutral for protein function, as by definition they exchange only codons, not amino acids. We identified an sSNP that modifies the local translation speed of the cystic fibrosis transmembrane conductance regulator (CFTR), leading to detrimental changes to protein stability and function. This sSNP introduces a codon pairing to a low-abundance tRNA that is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting tissue-specific effects of this sSNP. Up-regulation of the tRNA cognate to the mutated codon counteracts the effects of the sSNP and rescues protein conformation and function. Our results highlight the wide-ranging impact of sSNPs, which invert the programmed local speed of mRNA translation and provide direct evidence for the central role of cellular tRNA levels in mediating the actions of sSNPs in a tissue-specific manner.

Concepts: DNA, Protein, Amino acid, RNA, Ribosome, Protein biosynthesis, Genetic code, Transfer RNA

28

Transcriptionally silent sperm contains a variety of RNA fragments of both coding and non-coding transcripts. A recent article by Peng and colleagues reveals several new families of small RNAs enriched in sperm, which are derived from the same locus as tRNAs. The finding of these short fragments of tRNA in the sperm raises once again the question of the possible function(s) of such a miniaturized form of information carried by the spermatozoon.

Concepts: Gene, Genetics, RNA, Sperm, Ribosome, Semen, Non-coding RNA, Transfer RNA

28

SUMMARY: ncPRO-seq (Non-Coding RNA PROfiling in sRNA-seq) is a stand-alone, comprehensive and flexible ncRNA analysis pipeline. It can interrogate and perform detailed profiling analysis on small RNAs derived from annotated non-coding regions in miRBase, Rfam and RepeatMasker, as well as specific regions defined by users. The ncPRO-seq pipeline performs both gene-based and family-based analyses of small RNAs. It also has a module to identify regions significantly enriched with short reads, that cannot be classified under known ncRNA families, thus enabling the discovery of previously unknown ncRNA- or siRNA-producing regions. The ncPRO-seq pipeline supports input read sequences in fastq, fasta and color space format, as well as alignment results in BAM format, meaning that small RNA raw data from the 3 current major platforms (Roche-454, Illumina-Solexa and Life technologies-SOLiD) can be analyzed with this pipeline. The ncPRO-seq pipeline can be used to analyze read and alignment data, based on any sequenced genome, including, mammals and plants. AVAILABILITY: source code, annotation files, manual and online version are available at http://ncpro.curie.fr/. CONTACT: bioinfo.ncproseq@curie.fr; cciaudo@ethz.chSupplementary information Supplementary data are available at Bioinformatics online.

Concepts: DNA, RNA, Ribosomal RNA, Small interfering RNA, Non-coding RNA, Transfer RNA, Long noncoding RNA, Xist