SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Transcranial direct current stimulation

235

Evidence suggests that pathological eating behaviours in bulimia nervosa (BN) are underpinned by alterations in reward processing and self-regulatory control, and by functional changes in neurocircuitry encompassing the dorsolateral prefrontal cortex (DLPFC). Manipulation of this region with transcranial direct current stimulation (tDCS) may therefore alleviate symptoms of the disorder.

Concepts: Randomized controlled trial, Cerebrum, Attention versus memory in prefrontal cortex, Bipolar disorder, Dorsolateral prefrontal cortex, Brodmann area, Working memory, Transcranial direct current stimulation

171

Transcranial direct current stimulation (tDCS), a non-invasive neuromodulation technique inducing prolonged brain excitability changes and promoting cerebral plasticity, is a promising option for neurorehabilitation. Here, we review progress in research on tDCS and language functions and on the potential role of tDCS in the treatment of post-stroke aphasia. Currently available data suggest that tDCS over language-related brain areas can modulate linguistic abilities in healthy individuals and can improve language performance in patients with aphasia. Whether the results obtained in experimental conditions are functionally important for the quality of life of patients and their caregivers remains unclear. Despite the fact that important variables are yet to be determined, tDCS combined with rehabilitation techniques seems a promising therapeutic option for aphasia.

Concepts: Medicine, Electricity, Electrochemistry, Traumatic brain injury, Linguistics, Alternating current, Transcranial direct current stimulation, Broca's area

164

Transcranial direct current stimulation (tDCS) is a promising tool for cognitive enhancement and neurorehabilitation in clinical disorders in both cognitive and clinical domains (e.g., chronic pain, tinnitus). Here we suggest the potential role of tDCS in modulating cortical excitation/inhibition (E/I) balance and thereby inducing improvements. We suggest that part of the mechanism of action of tDCS can be explained by non-invasive modulations of the E/I balance.

Concepts: Electricity, Electrochemistry, Pain, Direct current, Alternating current, Transcranial magnetic stimulation, Chronic pain, Transcranial direct current stimulation

163

Transcranial direct current stimulation (tDCS) is an innovative method to explore the causal structure-function relationship of brain areas. We investigated the specificity of bilateral bi-cephalic tDCS with two active electrodes of the same polarity (e.g., cathodal on both hemispheres) applied to intraparietal cortices bilaterally using a combined between- and within-task approach. Regarding between-task specificity, we observed that bilateral bi-cephalic tDCS affected a numerical (mental addition) but not a control task (colour word Stroop), indicating a specific influence of tDCS on numerical but not on domain general cognitive processes associated with the bilateral IPS. In particular, the numerical effect of distractor distance was more pronounced under cathodal than under anodal stimulation. Moreover, with respect to within-task specificity we only found the numerical distractor distance effect in mental addition to be modulated by direct current stimulation, whereas the effect of target identity was not affected. This implies a differential influence of bilateral bi-cephalic tDCS on the recruitment of different processing components within the same task (number magnitude processing vs. recognition of familiarity). In sum, this first successful application of bilateral bi-cephalic tDCS with two active electrodes of the same polarity in numerical cognition research corroborates the specific proposition of the Triple Code Model that number magnitude information is represented bilaterally in the intraparietal cortices.

Concepts: Psychology, Cognitive psychology, Cognition, Perception, Mind, Real number, Transcranial direct current stimulation, International relations theory

157

Current standardized treatments for cognitive impairment in attention-deficit/hyperactivity disorder remain limited and their efficacy restricted. Transcranial direct current stimulation (tDCS) is a promising tool for enhancing cognitive performance in several neuropsychiatric disorders. Nevertheless, the effects of tDCS in reducing cognitive impairment in patients with attention-deficit/hyperactivity disorder (ADHD) have not yet been investigated.

Concepts: Electricity, Electrochemistry, Educational psychology, Alternating current, Transcranial direct current stimulation

114

We solve problems by applying previously learned rules. The dorsolateral prefrontal cortex (DLPFC) plays a pivotal role in automating this process of rule induction. Despite its usual efficiency, this process fails when we encounter new problems in which past experience leads to a mental rut. Learned rules could therefore act as constraints which need to be removed in order to change the problem representation for producing the solution. We investigated the possibility of suppressing the DLPFC by transcranial direct current stimulation (tDCS) to facilitate such representational change. Participants solved matchstick arithmetic problems before and after receiving cathodal, anodal or sham tDCS to the left DLPFC. Participants who received cathodal tDCS were more likely to solve the problems that require the maximal relaxation of previously learned constraints than the participants who received anodal or sham tDCS. We conclude that cathodal tDCS over the left DLPFC might facilitate the relaxation of learned constraints, leading to a successful representational change.

Concepts: Cerebrum, Attention versus memory in prefrontal cortex, Dorsolateral prefrontal cortex, Problem solving, Brodmann area, Transcranial direct current stimulation

56

Transcranical direct current stimulation (tDCS) is a treatment known to ameliorate various neurological conditions and enhance memory and cognition in humans. tDCS has gained traction for its potential therapeutic value; however, little is known about its mechanism of action. Using a transgenic mouse expressing G-CaMP7 in astrocytes and a subpopulation of excitatory neurons, we find that tDCS induces large-amplitude astrocytic Ca(2+) surges across the entire cortex with no obvious changes in the local field potential. Moreover, sensory evoked cortical responses are enhanced after tDCS. These enhancements are dependent on the alpha-1 adrenergic receptor and are not observed in IP3R2 (inositol trisphosphate receptor type 2) knockout mice, in which astrocytic Ca(2+) surges are absent. Together, we propose that tDCS changes the metaplasticity of the cortex through astrocytic Ca(2+)/IP3 signalling.

Concepts: Neuron, Brain, Signal transduction, Cerebral cortex, Neurology, Transcranial direct current stimulation, Adrenergic receptor, Alpha-1 adrenergic receptor

43

Previous research suggests that anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements). Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP)-like processes. Using a double-blind within-subject cross-over design, subjects (n=14) participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA) was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001) and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice) was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001). This effect was large (Cohen's d=1.01) and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

Concepts: Synaptic plasticity, Memory, Cerebrum, Hippocampus, NMDA receptor, Long-term potentiation, Long-term memory, Transcranial direct current stimulation

43

Transcranial direct current stimulation (tDCS), a simple means of brain stimulation, possesses a trifecta of appealing features: it is relatively safe, relatively inexpensive and relatively effective. It is also relatively easy to obtain a device and the do-it-yourself (DIY) community has become galvanised by reports that tDCS can be used as an all-purpose cognitive enhancer. We provide practical recommendations designed to guide balanced discourse, propagate norms of safe use and stimulate dialogue between the DIY community and regulatory authorities. We call on all stakeholders-regulators, scientists and the DIY community-to share in crafting policy proposals that ensure public safety while supporting DIY innovation.

Concepts: Perception, Direct current, Transcranial magnetic stimulation, Transcranial direct current stimulation, Public, Stimulation, Do it yourself, DIY

33

Transcranial direct current stimulation (tDCS) has been used to enhance endurance performance but its precise mechanisms and effects remain unknown.

Concepts: Electricity, Electrochemistry, Direct current, Alternating current, Transcranial magnetic stimulation, Transcranial direct current stimulation