SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Trace fossil

191

Trackways and tracemakers preserved together in the fossil record are rare. However, the co-occurrence of a drag mark, together with the dead animal that produced it, is exceptional. Here, we describe an 8.5 m long ammonite drag mark complete with the preserved ammonite shell (Subplanites rueppellianus) at its end. Previously recorded examples preserve ammonites with drag marks of < 1 m. The specimen was recovered from a quarry near Solnhofen, southern Germany. The drag mark consists of continuous parallel ridges and furrows produced by the ribs of the ammonite shell as it drifted just above the sediment surface, and does not reflect behaviour of the living animal.

Concepts: Sedimentary rock, Fossil, Calcite, Dinosaur, Bioerosion, Solnhofen limestone, Trace fossil, Nautilus

138

Mating behaviors have been widely studied for extant insects. However, cases of mating individuals are particularly rare in the fossil record of insects, and most of them involved preservation in amber while only in rare cases found in compression fossils. This considerably limits our knowledge of mating position and genitalia orientation during the Mesozoic, and hinders our understanding of the evolution of mating behaviors in this major component of modern ecosystems.

Concepts: Evolution, Geology, Fossil, Paleontology, Dinosaur, Trace fossil

137

A newly discovered assemblage of predominantly small tracks from the Cretaceous Patuxent Formation at NASA’s Goddard Space Flight Center, Maryland, reveals one of the highest track densities and diversities ever reported (~70 tracks, representing at least eight morphotypes from an area of only ~2 m2). The assemblage is dominated by small mammal tracks including the new ichnotxon Sederipes goddardensis, indicating sitting postures. Small crow-sized theropod trackways, the first from this unit, indicate social trackmakers and suggest slow-paced foraging behavior. Tracks of pterosaurs, and other small vertebrates suggest activity on an organic-rich substrate. Large well-preserved sauropod and nodosaurs tracks indicate the presence of large dinosaurs. The Patuxent Formation together with the recently reported Angolan assemblage comprise the world’s two largest Mesozoic mammal footprint assemblages. The high density of footprint registration at the NASA site indicates special preservational and taphonomic conditions. These include early, penecontemporaneous deposition of siderite in organic rich, reducing wetland settings where even the flesh of body fossils can be mummified. Thus, the track-rich ironstone substrates of the Patuxent Formation, appear to preserve a unique vertebrate ichnofacies, with associated, exceptionally-preserved body fossil remains for which there are currently no other similar examples preserved in the fossil record.

Concepts: Cretaceous, Fossil, Paleontology, Dinosaur, Taphonomy, Trace fossil, Fossils

67

Coprolites (fossil faeces) reveal clues to ancient trophic relations, and contain inclusions representing organisms that are rarely preserved elsewhere. However, much information is lost by classical techniques of investigation, which cannot find and image the inclusions in an adequate manner. We demonstrate that propagation phase-contrast synchrotron microtomography (PPC-SRμCT) permits high-quality virtual 3D-reconstruction of coprolite inclusions, exemplified by two coprolites from the Upper Triassic locality Krasiejów, Poland; one of the coprolites contains delicate beetle remains, and the other one a partly articulated fish and fragments of bivalves.

Concepts: Feces, Fossil, Paleontology, Dinosaur, Triassic, Trace fossil, Coprolite, Lloyds Bank coprolite

39

Remains of parasites in vertebrates are rare from the Mesozoic and Paleozoic. Once most parasites that live in - or pass through - the gastrointestinal tract of vertebrates, fossil feces (coprolites) or even intestinal contents (enterolites) can eventually preserve their remains. Here we announce the discovery of a spiral shark coprolite from the Paleozoic bearing a cluster of 93 small oval-elliptical smooth-shelled structures, interpreted as eggs of a tapeworm.The eggs were found in a thin section of an elasmobranch coprolite. Most of the eggs are filled by pyrite and some have a special polar swelling (operculum), suggesting they are non-erupted eggs. One of the eggs contains a probable developing larva. The eggs are approximately 145-155 µm in length and 88-100 µm in width and vary little in size within the cluster. The depositional and morphological features of the eggs closely resemble those of cestodes. Not only do the individual eggs have features of extant tapeworms, but their deposition all together in an elongate segment is typical to modern tapeworm eggs deposited in mature segments (proglottids). This is the earliest fossil record of tapeworm parasitism of vertebrates and establishes a timeline for the evolution of cestodes. This discovery shows that the fossil record of vertebrate intestinal parasites is much older than was hitherto known and that the interaction between tapeworms and vertebrates occurred at least since the Middle-Late Permian.

Concepts: Parasites, Fish, Geology, Fossil, Paleontology, Dinosaur, Trace fossil, Coprolite

36

Stem mammaliaforms are forerunners to modern mammals, and they achieved considerable ecomorphological diversity in their own right. Recent discoveries suggest that eleutherodontids, a subclade of Haramiyida, were more species-rich during the Jurassic period in Asia than previously recognized. Here we report a new Jurassic eleutherodontid mammaliaform with an unusual mosaic of highly specialized characteristics, and the results of phylogenetic analyses that support the hypothesis that haramiyidans are stem mammaliaforms. The new fossil shows fossilized skin membranes that are interpreted to be for gliding and a mandibular middle ear with a unique character combination previously unknown in mammaliaforms. Incisor replacement is prolonged until well after molars are fully erupted, a timing pattern unique to most other mammaliaforms. In situ molar occlusion and a functional analysis reveal a new mode of dental occlusion: dual mortar-pestle occlusion of opposing upper and lower molars, probably for dual crushing and grinding. This suggests that eleutherodontids are herbivorous, and probably specialized for granivory or feeding on soft plant tissues. The inferred dietary adaptation of eleutherodontid gliders represents a remarkable evolutionary convergence with herbivorous gliders in Theria. These Jurassic fossils represent volant, herbivorous stem mammaliaforms associated with pre-angiosperm plants that appear long before the later, iterative associations between angiosperm plants and volant herbivores in various therian clades.

Concepts: Evolution, Plant, Mammal, Fossil, Dinosaur, Mesozoic, Trace fossil

29

The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the ‘agronomic revolution’. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossilArenicolitesfrom late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossilTreptichnus pedum. TheseArenicolitesare large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.

Concepts: Animal, Fossil, Paleontology, Cambrian explosion, Cambrian, Trace fossil, Treptichnus pedum, Kimberella

21

The Buxton-Norlim Limeworks southwest of Taung, South Africa, is renowned for the discovery of the first Australopithecus africanus fossil, the ‘Taung Child’. The hominin was recovered from a distinctive pink calcrete that contains an abundance of invertebrate ichnofauna belonging to the Coprinisphaera ichnofacies. Here we describe the first fossil bee’s nest, attributed to the ichnogenus Celliforma, from the Plio-Pleistocene of Africa. Petrographic examination of a cell lining revealed the preservation of an intricate organic matrix lined with the calcitic casts of numerous plant trichomes-a nesting behaviour unique to the modern-day carder bees (Anthidiini). The presence of Celliforma considered alongside several other recorded ichnofossils can be indicative of a dry, savannah environment, in agreement with recent work on the palaeoenvironment of Plio-Pleistocene southern Africa. Moreover, the occurrence of ground-nesting bees provides further evidence that the pink calcrete deposits are of pedogenic origin, rather than speleogenic origin as has previously been assumed. This study demonstrates the potential value of insect trace fossils as palaeoenvironmental indicators.

Concepts: Evolution, Africa, Insect, South Africa, Fossil, Australopithecus africanus, Trace fossil, Taung Child

14

Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment.

Concepts: Nervous system, Insect, Animal, Organ, Eye, Extinction, Dinosaur, Trace fossil

13

Reef-building in metazoans represents an important ecological innovation whereby individuals collectively enhance feeding efficiency and gain protection from competitors and predation. The appearance of metazoan reefs in the fossil record therefore indicates an adaptive response to complex ecological pressures. In the Nama Group, Namibia, we found evidence of reef-building by the earliest known skeletal metazoan, the globally distributed Cloudina, ~548 million years ago. These Cloudina reefs formed open frameworks without a microbial component but with mutual attachment and cementation between individuals. Orientated growth implies a passive suspension-feeding habit into nutrient-rich currents. The characteristics of Cloudina support the view that metazoan reef-building was promoted by the rise of substrate competitors and predators.

Concepts: Evolution, Predation, Animal, Herbivore, Cambrian, Trace fossil