Discover the most talked about and latest scientific content & concepts.

Concept: Toxicology


Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants.

Concepts: Chemical substance, Mixture, Toxicology, Pollution, Plastic, Chemical compound, Material, Ocean


The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.

Concepts: Epidemiology, Agriculture, Animal testing, Toxicology, Carcinogen, Herbicide, Glyphosate, Roundup


Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI). This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM). Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

Concepts: Glucose, Liver, Glycogen, Actin, Bile, Toxicology, Smooth muscle, Hepatocyte


The Comparative Toxicogenomics Database (CTD) is a public resource that promotes understanding about the effects of environmental chemicals on human health. CTD biocurators read the scientific literature and manually curate a triad of chemical-gene, chemical-disease and gene-disease interactions. Typically, articles for CTD are selected using a chemical-centric approach by querying PubMed to retrieve a corpus containing the chemical of interest. Although this technique ensures adequate coverage of knowledge about the chemical (i.e. data completeness), it does not necessarily reflect the most current state of all toxicological research in the community at large (i.e. data currency). Keeping databases current with the most recent scientific results, as well as providing a rich historical background from legacy articles, is a challenging process. To address this issue of data currency, CTD designed and tested a journal-centric approach of curation to complement our chemical-centric method. We first identified priority journals based on defined criteria. Next, over 7 weeks, three biocurators reviewed 2425 articles from three consecutive years (2009-2011) of three targeted journals. From this corpus, 1252 articles contained relevant data for CTD and 52 752 interactions were manually curated. Here, we describe our journal selection process, two methods of document delivery for the biocurators and the analysis of the resulting curation metrics, including data currency, and both intra-journal and inter-journal comparisons of research topics. Based on our results, we expect that curation by select journals can (i) be easily incorporated into the curation pipeline to complement our chemical-centric approach; (ii) build content more evenly for chemicals, genes and diseases in CTD (rather than biasing data by chemicals-of-interest); (iii) reflect developing areas in environmental health and (iv) improve overall data currency for chemicals, genes and diseases. Database URL:

Concepts: Health, Chemical substance, Toxicology, Chemical industry, Comparative Toxicogenomics Database, Curator, Journal, Toxicogenomics


The objective of the study is a comparative evaluation of flavone isolated from Mucuna pruriens and coumarin isolated from Ionidium suffruticosum was assessed for the hypolipidemic activity in rats fed with high fat diet. The acute toxicity study was found that flavone (M.pruriens) and coumarin (I.suffruticosum) are safe up to 100mg/kg, so one tenth of this dose (10mg/kg) was consider as a evaluation dose. High fat diet group of rats showed significant (p<0.001) elevation in plasma total and LDL-cholesterol, triglycerides and phospholipids. Administration of flavone (M. pruriens) and coumarin isolated from (I.suffruticosum) at the dose of 10mg/kg b.wt/day along with high fat diet significantly (p<0.001) prevented the rise in the plasma total and LDL-cholesterol, triglycerides and phospholipids than that of other extracts. However, treatment of coumarin isolated from (I.suffruticosum) had showed more cardio protective effect against hyperlipidemia than that of flavone (M.pruriens).

Concepts: Cholesterol, Fatty acid, Statin, Toxicology, Acute accent, Glycerol, Acute toxicity, Mucuna pruriens


Copper is an essential element in various metabolisms. The investigation was carried out to evaluate acute gastroprotective effects of the Copper (II) complex against ethanol-induced superficial hemorrhagic mucosal lesions in rats.

Concepts: Chemical element, Toxicology, Acute toxicity, Alchemy, Schiff base, Peter Slabakov, Hugo Schiff


Despite recent advances in understanding mechanism of toxicity, the development of biomarkers (biochemicals that vary significantly with exposure to chemicals) for pesticides and environmental contaminants exposure is still a challenging task. Carbofuran is one of the most commonly used pesticides in agriculture and said to be most toxic carbamate pesticide. It is necessary to identify the biochemicals that can vary significantly after carbofuran exposure on earthworms which will help to assess the soil ecotoxicity. Initially, we have optimized the extraction conditions which are suitable for high-throughput gas chromatography mass spectrometry (GC-MS) based metabolomics for the tissue of earthworm, Metaphire posthuma. Upon evaluation of five different extraction solvent systems, 80% methanol was found to have good extraction efficiency based on the yields of metabolites, multivariate analysis, total number of peaks and reproducibility of metabolites. Later the toxicity evaluation was performed to characterize the tissue specific metabolomic perturbation of earthworm, Metaphire posthuma after exposure to carbofuran at three different concentration levels (0.15, 0.3 and 0.6 mg/kg of soil). Seventeen metabolites, contributing to the best classification performance of highest dose dependent carbofuran exposed earthworms from healthy controls were identified. This study suggests that GC-MS based metabolomic approach was precise and sensitive to measure the earthworm responses to carbofuran exposure in soil, and can be used as a promising tool for environmental eco-toxicological studies.

Concepts: Metabolism, Toxicology, Chromatography, Liquid chromatography-mass spectrometry, Metabolomics, Earthworm, Gas chromatography-mass spectrometry


The present paper provides an overview of research concerning both acute and chronic effects of exposure to noise on children’s cognitive performance. Experimental studies addressing the impact of acute exposure showed negative effects on speech perception and listening comprehension. These effects are more pronounced in children as compared to adults. Children with language or attention disorders and second-language learners are still more impaired than age-matched controls. Noise-induced disruption was also found for non-auditory tasks, i.e., serial recall of visually presented lists and reading. The impact of chronic exposure to noise was examined in quasi-experimental studies. Indoor noise and reverberation in classroom settings were found to be associated with poorer performance of the children in verbal tasks. Regarding chronic exposure to aircraft noise, studies consistently found that high exposure is associated with lower reading performance. Even though the reported effects are usually small in magnitude, and confounding variables were not always sufficiently controlled, policy makers responsible for noise abatement should be aware of the potential impact of environmental noise on children’s development.

Concepts: Present, Psychology, Understanding, Cognition, Toxicology, Perception, Confounding, Noise pollution


Although persistent, bioaccumulative and toxic pollutants (PBTs) are well-studied individually, their distribution and variability on a global scale are largely unknown, particularly in marine fish. Using 2,662 measurements collected from peer-reviewed literature spanning 1969-2012, we examined variability of five classes of PBTs, considering effects of geography, habitat, and trophic level on observed concentrations. While we see large-scale spatial patterning in some PBTs (chlordanes, polychlorinated biphenyls), habitat type and trophic level did not contribute to significant patterning, with the exception of mercury. We further examined patterns of change in PBT concentration as a function of sampling year. All PBTs showed significant declines in concentration levels through time, ranging from 15-30% reduction per decade across PBT groups. Despite consistent evidence of reductions, variation in pollutant concentration remains high, indicating ongoing consumer risk of exposure to fish with pollutant levels exceeding EPA screening values. The temporal trends indicate that mitigation programs are effective, but that global levels decline slowly. In order for monitoring efforts to provide more targeted assessments of risk to PBT exposure, these data highlight an urgent need for improved replication and standardization of pollutant monitoring protocols for marine finfish.

Concepts: Time, Scientific method, Toxicology, Pollution, Food chain, Polychlorinated biphenyl, Biomagnification, Polychlorinated dibenzodioxins


The chronic kidney disease of unknown etiology (CKDu) among paddy farmers in was first reported in 1994 and has now become most important public health issue in dry zone of Sri Lanka. The objective was to identify risk factors associated with the epidemic in an area with high prevalence.

Concepts: Chronic kidney disease, Medicine, Public health, Epidemiology, Toxicology, Sri Lanka, Debut albums, Sri