SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Titanium

177

The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu(64.5)Zr(35.5) alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe “Bergman triacontahedron” packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

Concepts: Scientific method, Iron, Solid, Titanium, Glass, Glass transition, Physics of glass, Icosidodecahedron

166

PURPOSE: To compare the biomechanical and technical properties of flexor tendon repairs using a 4-strand cruciate FiberWire (FW) repair and a 2-strand multifilament stainless steel (MFSS) single cross-lock cable-crimp system. METHODS: Eight tests were conducted for each type of repair using cadaver hand flexor digitorum profundus tendons. We measured the required surgical exposure, repair time, and force of flexion (friction) with a custom motor system with an inline load cell and measured ultimate tensile strength (UTS) and 2-mm gap force on a servo-hydraulic testing machine. RESULTS: Repair time averaged less than 7 minutes for the 2-strand MFSS cable crimp repairs and 12 minutes for the FW repairs. The FW repair was performed with 2 cm of exposure and removal of the C-1 and A-3 pulleys. The C-1 and A-3 pulleys were retained in each of the MFSS cable crimp repairs with less than 1 cm of exposure. Following the FW repair, the average increase in friction was 89% compared with an average of 53% for the MFSS repairs. Six of the 8 MFSS specimens achieved the UTS before any gap had occurred, whereas all of the FW repairs had more than 2 mm of gap before the UTS, indicating that the MFSS was a stiffer repair. The average UTS appeared similar for both groups. CONCLUSIONS: We describe a 2-strand multifilament stainless steel single cross-lock cable crimp flexor repair system. In our studies of this cable crimp system, we found that surgical exposure, average repair times, and friction were reduced compared to the traditional 4-strand cruciate FW repair. While demonstrating these benefits, the crimp repair also produced a stiff construct and high UTS and 2-mm gap force. CLINICAL RELEVANCE: A cable crimp flexor tendon repair may offer an attractive alternative to current repair methods. The benefits may be important especially for flexor tendon repair in zone 2 or for the repair of multiple tendons.

Concepts: Knee, Force, Tensile strength, Steel, Titanium, Strength of materials, Flexor digitorum profundus muscle, Stainless steel

75

Food-grade titanium dioxide (TiO2) containing a nanoscale particle fraction (TiO2-NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO2-NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer’s patches (PP) as observed with the TiO2-NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO2-treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO2 from dietary sources.

Concepts: Immune system, Inflammation, Monocyte, Titanium dioxide, Titanium, Rutile, Pigment, Titanium tetrachloride

32

Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films using a mixture of PbX2 and CH3NH3X in a common solvent. However, the uncontrolled precipitation of the perovskite produces large morphological variations, resulting in a wide spread of photovoltaic performance in the resulting devices, which hampers the prospects for practical applications. Here we describe a sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film. PbI2 is first introduced from solution into a nanoporous titanium dioxide film and subsequently transformed into the perovskite by exposing it to a solution of CH3NH3I. We find that the conversion occurs within the nanoporous host as soon as the two components come into contact, permitting much better control over the perovskite morphology than is possible with the previously employed route. Using this technique for the fabrication of solid-state mesoscopic solar cells greatly increases the reproducibility of their performance and allows us to achieve a power conversion efficiency of approximately 15 per cent (measured under standard AM1.5G test conditions on solar zenith angle, solar light intensity and cell temperature). This two-step method should provide new opportunities for the fabrication of solution-processed photovoltaic cells with unprecedented power conversion efficiencies and high stability equal to or even greater than those of today’s best thin-film photovoltaic devices.

Concepts: Oxygen, Oxide, Cadmium, Solar cell, Photovoltaics, Titanium dioxide, Energy conversion efficiency, Titanium

30

Decades of research has been focused on improving the high-temperature properties of nickel-based superalloys, an essential class of materials used in the hot section of jet turbine engines, allowing increased engine efficiency and reduced CO2 emissions. Here we introduce a new ‘phase-transformation strengthening’ mechanism that resists high-temperature creep deformation in nickel-based superalloys, where specific alloying elements inhibit the deleterious deformation mode of nanotwinning at temperatures above 700 °C. Ultra-high-resolution structure and composition analysis via scanning transmission electron microscopy, combined with density functional theory calculations, reveals that a superalloy with higher concentrations of the elements titanium, tantalum and niobium encourage a shear-induced solid-state transformation from the γ' to η phase along stacking faults in γ' precipitates, which would normally be the precursors of deformation twins. This nanoscale η phase creates a low-energy structure that inhibits thickening of stacking faults into twins, leading to significant improvement in creep properties.

Concepts: Electron, Iron, Metallurgy, Titanium, Jet engine, Turbine, Engine, Gas turbine

29

Toxicological studies show that oral doses of nickel and chromium can cause cutaneous adverse reactions such as dermatitis. Additional dietary sources, such as leaching from stainless steel cookware during food preparation, are not well characterized. This study examined stainless steel grades, cooking time, repetitive cooking cycles, and multiple types of tomato sauces for their effects on nickel and chromium leaching. Trials included three types of stainless steels and a stainless steel saucepan; cooking times of 2 to 20 hours, ten consecutive cooking cycles, and four commercial tomato sauces. After a simulated cooking process, samples were analyzed by ICP-MS for Ni and Cr. After six hours of cooking, Ni and Cr concentrations in tomato sauce increased up to 26- and 7-fold respectively, depending on the grade of stainless steel. Longer cooking durations resulted in additional increases in metal leaching, where Ni concentrations increased 34 fold and Cr increased approximately 35 fold from sauces cooked without stainless steel. Cooking with new stainless steel resulted in the largest increases. Metal leaching decreases with sequential cooking cycles and stabilized after the sixth cooking cycle, though significant metal contributions to foods were still observed. The tenth cooking cycle, resulted in an average of 88 µg of Ni and 86 µg of Cr leached per 126 g serving of tomato sauce. Stainless steel cookware can be an overlooked significant source of nickel and chromium, where the contribution is dependent on stainless steel grade, cooking time, and cookware usage.

Concepts: Steel, Titanium, Stainless steel, Chromium, Nickel, Corrosion, Sauce, Steels

29

Many surgical procedures use metal implants in bone. The clinical results depend on the strength of the bone holding these implants. Our objective was to show that a drug released from the implant surface can improve parameters reflecting the quality or amount of this bone. Sixteen patients received paired dental titanium implants in the maxilla, in a randomized, double-blinded fashion. One implant in each pair was coated with a thin fibrinogen layer containing 2 bisphosphonates. The other implant was untreated. Fixation was evaluated by measurement of resonance frequency (implant stability quotient; ISQ) serving as a proxy for stiffness of the implant-bone construct. Increase in ISQ at 6months of follow-up was the primary variable. None of the patients had any complications. The resonance frequency increased 6.9 ISQ units more for the coated implants (p=0.0001; Cohen’s d=1.3). The average difference in increase in ISQ, and the effect size, suggested a clinically relevant improvement. X-ray showed less bone resorption at the margin of the implant both at 2months (p=0.012) and at 6months (p=0.012). In conclusion, a thin, bisphosphonate-eluting fibrinogen coating might improve the fixation of metal implants in human bone. This might lead to new possibilities for orthopedic surgery in osteoporotic bone and for dental implants.

Concepts: Osteoporosis, Improve, Surgery, Dental implant, Titanium, Dentistry, Resonance Frequency Analysis, Implant stability quotient

28

The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO2 rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In2(3+)VO(••)Ti(3+) and 'diamond' shaped Nb2(5+)Ti(3+)ATi (A  =  Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO2. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

Concepts: Scientific method, Electron, Fundamental physics concepts, Schrödinger equation, Temperature, Kinetic energy, Density functional theory, Titanium

28

The synthesis of highly-crystalline porous TiO(2) microspheres is reported using ultrasonic spray pyrolysis (USP) in the presence of colloidal silica as a template. We have exploited the interactions between hot SiO(2) template particles surface and TiO(2) precursor that occur during reaction inside the droplets, to control the physical and chemical properties of the resulting particles. Varying the SiO(2) to titanium precursor molar ratio and the colloidal silica dimension, we obtained porous titania microspheres with tunable morphology, porosity, BET surface area, crystallite size, band-gap, and phase composition. In this regard, we have also observed the preferential formation of anatase vs. rutile with increasing initial surface area of the silica template. The porous TiO(2) microspheres were tested in the photocatalytic degradation of nitrogen oxides (NO(x)) in the gas phase. USP prepared nanostructured titania samples were found to have significantly superior specific activity per surface area compared to a commercial reference sample (P25 by Evonik-Degussa).

Concepts: Oxygen, Chemical reaction, Oxide, Oxides, Titanium dioxide, Titanium, Rutile, Anatase

28

Background: To date, very few experimental studies have addressed the effect of bone drilling technique and sequence on dental implant osseointegration. In this study, we hypothesized that there would be no differences in osseointegration when reducing the number of drills for osteotomy compared to the conventional drilling protocols. Methods: Seventy-two implants (diameter 3.75 mm and diameter 4.2 mm, n=36 for each diameter) were bilaterally placed in the tibia of 18 beagles for 1, 3, and 5 weeks. Half of the implants of each diameter were placed using a simplified drilling procedure (pilot and final drill) and the other half were placed using a conventional drilling procedure (all drills in sequence). The retrieved samples were subjected to histologic/histomorphometric evaluation. Results: Histology showed that new bone formed around the implant and inflammation or bone resorption was not evident for both groups. Histomorphometrically, the simplified group presented significantly higher bone-to-implant contact and bone area fraction occupancy as compared to the conventional group after 1 week, however, no differences were detected at 3 and 5 weeks. Conclusion: It can be suggested that bone responses to the implant with the simplified protocol is comparable to the conventional protocol.

Concepts: Implants, Prosthetics, Drill, Dental implant, Titanium, Oral and maxillofacial surgery, Osseointegration, Per-Ingvar Brånemark