Discover the most talked about and latest scientific content & concepts.

Concept: Titanium tetrachloride


Food-grade titanium dioxide (TiO2) containing a nanoscale particle fraction (TiO2-NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO2-NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer’s patches (PP) as observed with the TiO2-NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO2-treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO2 from dietary sources.

Concepts: Immune system, Inflammation, Monocyte, Titanium dioxide, Titanium, Rutile, Pigment, Titanium tetrachloride


A kind of bioinspired heterostructured bead-on-string fiber (BHBF), composed of poly-(methyl methacrylate) (PMMA) and titanium tetrachloride (TiCl4) hydrolyzed nanoparticles, was prepared via integrating a wet-assembly system, including PMMA electrospinning, fog of nanoparticles and water coalescence at multi-stages. The wet-assembly of BHBF was regulated by the difference in surface energy and Laplace pressure. Especially, BHBF is characteristic of a hydrophilic rough bead for excellent water collection ability.

Concepts: Water, Surface tension, Fiber, Titanium dioxide, Titanium, Dietary fiber, Titanium tetrachloride, Kroll process


Abstract The production of titanium dioxide nanoparticles (TiO2 NPs) for commercial applications has greatly increased over the last years and consequently the potential risk for human health. There is a growing awareness of the need to understand the behavior and influence these nanoparticles exert on the environment. Bioaccumulation serves as a good integrator to assess chemical exposure in aquatic systems and is dependent on factors, such as the exposure routes, diet and the aqueous medium. We analyzed the experimental bioaccumulation capability of ionic titanium and TiO2 NPs by zebrafish (Danio rerio) eleutheroembryos through bioconcentration factors (BCFs), after 48 or 72 h of exposure. The stability of both chemical forms in an aquatic medium was fully characterized for further bioaccumulation studies. Several stabilizing agents (humic acids, soluble starch, polyethylene glycol, Na4P2O7 and Na2HPO4) for anatase and rutile, the two allotrophs of TiO2 NPs, were evaluated to check the evolution of the aggregation process. Around 60% of TiO2 NPs remained disaggregated under simulated environmental conditions with the addition of 50 mg L(-1) of humic acids. However, the presence of eleutheroembryos in the exposure medium increased TiO2 NPs aggregation in the experimental tests. The BCFs values obtained in all cases were <100, which classifies ionic titanium and TiO2 NPs as non-bioaccumulative substances, under the REACH regulations.

Concepts: Oxide, Titanium dioxide, Titanium, Rutile, Danio kyathit, Anatase, Titanium tetrachloride, Ilmenite


We report a one-step process for the synthesis and deposition of anatase, two-dimensional (2D), disk-shaped TiO2 (DS-TiO2) using titanium isopropoxide (TTIP), ethyl cellulose (EC), and solvents. The planar structure of EC plays a pivotal role as the sacrificing template to generate the 2D disk-shaped structure with a thickness of 1.5-3.5 μm, while a disk-like structure was well developed in the tetrahydrofuran (THF)/toluene mixed solvent. The quasi-solid-state dye-sensitized solar cells (qssDSSCs), fabricated with a nanogel electrolyte and a DS-TiO2 layer on a nanocrystalline (NC)-TiO2 photoanode, showed an energy conversion efficiency of 5.0% without any TiCl4 post-treatment, which is higher than that fabricated without DS-TiO2 (4.2%). When utilizing a poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII) as the solid electrolyte, a high efficiency of 6.6% was achieved due to the combination of high mobility PEBII and a bi-functional DS-TiO2 layer with a 2D structure and anatase phase. The bi-functionality of the DS-TiO2 layer allows greater light scattering back into the device and provides additional surface area for improved dye adsorption, resulting in short circuit current density (Jsc).

Concepts: Solid, Solar cell, Titanium dioxide, Energy conversion, Energy conversion efficiency, Dye-sensitized solar cell, Titanium, Titanium tetrachloride


Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m(2) g(-1) were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity.

Concepts: Electrochemistry, Carbon, Nanotechnology, Titanium, Area, Specific surface area, Dopant, Titanium tetrachloride


Titanium dioxide (TiO2) is one of the most common nanoparticles found in industry ranging from food additives to energy generation. Approximately four million tons of TiO2 particles are produced worldwide each year with approximately 3000 tons being produced in nanoparticulate form, hence exposure to these particles is almost certain.

Concepts: Ultraviolet, Staphylococcus aureus, Oxide, Titanium dioxide, E number, Titanium, Rutile, Titanium tetrachloride


Titanium dioxide (TiO2) is produced at high volumes and applied in many consumer and food products. Recent toxicokinetic modelling indicated the potential of TiO2 to accumulate in human liver and spleen upon daily oral exposure, which is not routinely investigated in chronic animal studies. A health risk from nanosized TiO2 particle consumption could not be excluded then.

Concepts: Ultraviolet, Liver, Oxide, Titanium dioxide, Titanium, Rutile, Titanium tetrachloride, Ilmenite


We report a bottom-up synthetic methodology to encapsulate pre-synthesized, well-defined gold nanoparticles (AuNPs) into mesoporous titanium dioxide framework (Au@mTiO2). This method employs two structurally and chemically similar templates of amphiphilic block copolymers as well as poly(ethylene oxide)-tethered AuNPs, which showed excellent stability during sol-gel transition and thermal annealing at elevated temperatures. Such synthesis enabled precise control of sizes and loading of AuNPs within the mesoporous TiO2 framework. In light-driven methanol dehydrogenation, the presence of AuNPs significantly enhanced the photocatalytic activity of mTiO2. This co-template-directed synthesis presents new opportunities to understand the effect of AuNP size in photocatalysis using Au@mTiO2 materials.

Concepts: Nanoparticle, Gold, Titanium dioxide, Silver, Titanium, Photocatalysis, Anatase, Titanium tetrachloride


Several primate neurophysiology laboratories have adopted acrylic-free, custom-fit cranial implants. These implants are often comprised of titanium or plastic polymers, such as polyether ether ketone (PEEK). Titanium is favored for its mechanical strength and osseointegrative properties whereas PEEK is notable for its lightweight, machinability, and MRI compatibility. Recent titanium/PEEK implants have proven to be effective in minimizing infection and implant failure, thereby prolonging experiments and optimizing the scientific contribution of a single primate.

Concepts: Oxygen, Chemistry, Science, Experiment, Tensile strength, Dental implant, Titanium, Titanium tetrachloride


Titanium dioxide (TiO2) belongs to the materials that have gained great importance in many applications. In its particulate form (micro- or nanoparticles), it has entered a huge number of consumer products and food-grade TiO2, better known as E171 within the European Union, represents an important food additive. Thus, there is an increasing need for analytical methods able to detect and quantify such particles. In this regard, inductively coupled-mass spectrometry (ICP-MS), in particular single particle ICP-MS (spICP-MS), has gained importance due to its simplicity and ease of use. Nevertheless, the number of applications for Ti nanoparticles is rather limited. In this study, we have applied the spICP-MS strategy by comparing different measuring modes available in triple quadrupole ICP-MS. First, single quadrupole mode using the collision/reaction cell system was selected for monitoring the isotope47Ti. Different cell gases like He, O2and NH3were tested under optimised conditions for its applicability in spICP-MS of standard suspensions of TiO2. The determined analytical figures of merit were compared to those obtained by triple quadrupole mode using the47Ti or48Ti reaction products using O2and NH3as reaction gases. This comparison demonstrated that the triple quadrupole mode (TQ mode) was superior in terms of sensitivity due to the more efficient removal of spectral interferences. Particle size detection limits down to 26nm were obtained using the best instrumental conditions for TiO2particles at a dwell time of 10ms. Finally, the different measuring modes were applied to the analysis of chewing gum samples after a simple extraction procedure using an ultrasonic bath. The obtained results showed a good agreement for the detected particle size range using the different TQ modes. The size range of TiO2particles was determined to be between approximately 30 and 200nm, whereas roughly 40% of the particles were smaller than 100nm. For the determination of the particle number concentration in these real samples, we suggest CeO2particles as internal standard.

Concepts: Ultraviolet, Analytical chemistry, Oxide, Titanium dioxide, E number, Titanium, Rutile, Titanium tetrachloride