SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Titanium dioxide

333

The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body. We used skin and lymphatic tissues from human corpses to address local biokinetics by means of synchrotron X-ray fluorescence (XRF) techniques at both the micro (μ) and nano (ν) scale. Additional advanced mass spectrometry-based methodology enabled to demonstrate simultaneous transport of organic pigments, heavy metals and titanium dioxide from skin to regional lymph nodes. Among these compounds, organic pigments displayed the broadest size range with smallest species preferentially reaching the lymph nodes. Using synchrotron μ-FTIR analysis we were also able to detect ultrastructural changes of the tissue adjacent to tattoo particles through altered amide I α-helix to β-sheet protein ratios and elevated lipid contents. Altogether we report strong evidence for both migration and long-term deposition of toxic elements and tattoo pigments as well as for conformational alterations of biomolecules that likely contribute to cutaneous inflammation and other adversities upon tattooing.

Concepts: Oxygen, Lymph node, Lymphatic system, Skin, Tissue, Titanium dioxide, Heavy metal music, Tattoo

176

The nanoparticle industry is expected to become a trillion dollar business in the near future. Therefore, the unintentional introduction of nanoparticles into the environment is increasingly likely. However, currently applied risk-assessment practices require further adaptation to accommodate the intrinsic nature of engineered nanoparticles. Combining a chronic flow-through exposure system with subsequent acute toxicity tests for the standard test organism Daphnia magna, we found that juvenile offspring of adults that were previously exposed to titanium dioxide nanoparticles exhibit a significantly increased sensitivity to titanium dioxide nanoparticles compared with the offspring of unexposed adults, as displayed by lower 96 h-EC(50) values. This observation is particularly remarkable because adults exhibited no differences among treatments in terms of typically assessed endpoints, such as sensitivity, number of offspring, or energy reserves. Hence, the present study suggests that ecotoxicological research requires further development to include the assessment of the environmental risks of nanoparticles for the next and hence not directly exposed generation, which is currently not included in standard test protocols.

Concepts: Environment, Natural environment, Data, Assessment, Titanium dioxide, Star Trek: The Next Generation, Daphnia, Jonathan Frakes

172

In this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined. This synthesis method provided a straightforward, one-step CVD process to grow relatively long ZnO nanowires and avoided subsequent nanowire transfer process, which simplified DSSC fabrication and improved cell performance.

Concepts: Chromosome, Chemical reaction, Nanowire, Solar cell, Photovoltaics, Titanium dioxide, Dye-sensitized solar cell, Chemical vapor deposition

172

Highly efficient room-temperature ultraviolet (UV) luminescence is obtained in heterostructures consisting of 10-nm-thick ultrathin ZnO films grown on Si nanopillars fabricated using self-assembled silver nanoislands as a natural metal nanomask during a subsequent dry etching process. Atomic layer deposition was applied for depositing the ZnO films on the Si nanopillars under an ambient temperature of 200°C. Based on measurements of photoluminescence (PL), an intensive UV emission corresponding to free-exciton recombination (approximately 3.31 eV) was observed with a nearly complete suppression of the defect-associated, broad-range visible emission peak. As compared to the ZnO/Si substrate, the almost five-times-of-magnitude enhancement in the intensity of PL, which peaked around 3.31 eV in the present ultrathin ZnO/Si nanopillars, is presumably attributed to the high surface/volume ratio inherent to the Si nanopillars. This allowed considerably more amount of ZnO material to be grown on the template and led to markedly more efficient intrinsic emission.

Concepts: Ultraviolet, Titanium dioxide, Luminescence, Zinc oxide, Sunscreen, Surface-area-to-volume ratio, Intensive and extensive properties, Nanopillar

168

In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ZnO seeds was 400°C. The nanorod dimensions depended on the hydrothermal reaction parameters. The optimum hydrothermal reaction parameters to produce blunt tip-like nanorods (770 nm long and 80 nm in top diameter) were 0.1 M zinc nitrate, pH 7, and 4 h of growth duration. Phase analysis studies showed that all ZnO nanorods exhibited a strong (002) peak. Thus, the ZnO nanorods grew in a c-axis preferred orientation. A strong ultraviolet (UV) emission peak was observed for ZnO nanorods grown under optimized parameters with a low, deep-level emission peak, which indicated high optical property and crystallinity of the nanorods. The produced ZnO nanorods were also tested for their UV-sensing properties. All samples responded to UV light but with different sensing characteristics. Such different responses could be attributed to the high surface-to-volume ratio of the nanorods that correlated with the final ZnO nanorods morphology formed at different synthesis parameters. The sample grown using optimum synthesis parameters showed the highest responsivity of 0.024 A/W for UV light at 375 nm under a 3 V bias.

Concepts: Ultraviolet, Acid, Sunlight, Zinc, Titanium dioxide, Zinc oxide, Sunscreen, Brass

168

In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

Concepts: Temperature, Thermodynamics, Oxides, Titanium dioxide, Heat transfer, Zinc oxide, Sunscreen, Common oxide glass components

168

This work presents a novel white light device. An yttrium aluminum garnet (YAG) phosphor-incorporated zinc oxide (ZnO) film is deposited on a slide glass substrate by ultrasonic spray pyrolysis. A nanoflower consisting of a hexagonal nanopetal is formed on the surfaces of the samples, and the sizes of the nanopetal are approximately 200 to 700 nm. Additionally, the nanopetal becomes blunted with an increasing incorporated amount of YAG. As the incorporated amount is 1.5 and 2.5 wt.%, the photoluminescence color of the YAG-incorporated ZnO film is nearly white, possibly contributing to the YAG emission and the band-to-deep level transition in the ZnO film.

Concepts: Aluminium, Zinc, Color, Titanium dioxide, Zinc oxide, Yttrium aluminium garnet, Garnet, Yttrium

160

The prototypical photocatalyst TiO2 exists in different polymorphs, the most common forms are the anatase- and rutile-crystal structures. Generally, anatase is more active than rutile, but no consensus exists to explain this difference. Here we demonstrate that it is the bulk transport of excitons to the surface that contributes to the difference. Utilizing high -quality epitaxial TiO2 films of the two polymorphs we evaluate the photocatalytic activity as a function of TiO2-film thickness. For anatase the activity increases for films up to ~5 nm thick, while rutile films reach their maximum activity for ~2.5 nm films already. This shows that charge carriers excited deeper in the bulk contribute to surface reactions in anatase than in rutile. Furthermore, we measure surface orientation dependent activity on rutile single crystals. The pronounced orientation-dependent activity can also be correlated to anisotropic bulk charge carrier mobility, suggesting general importance of bulk charge diffusion for explaining photocatalytic anisotropies.

Concepts: Particle physics, Orientation, Titanium dioxide, Rutile, Young's modulus, Photocatalysis, Anatase, Charge carrier

135

Titanium dioxide is one of the most popular compounds among simple oxides. Except for the fully oxidized titanate, titanium oxides have partially filled d states and their exotic properties have captured attention. Here, we report on the discovery of superconductivity in Ti4O7 and γ-Ti3O5 in a thin film form. The epitaxial Ti4O7 and γ-Ti3O5 thin films were grown using pulsed-laser deposition on (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 and α-Al2O3 substrates, respectively. The highest superconducting transition temperatures are 3.0 K and 7.1 K for Ti4O7 and γ-Ti3O5, respectively. The mechanism behind the superconductivity is discussed on the basis of electrical measurements and previous theoretical predictions. We conclude that the superconductivity arises from unstabilized bipolaronic insulating states with the assistance of oxygen non-stoichiometry and epitaxial stabilization.

Concepts: Oxygen, Carbon dioxide, Nitrogen, Oxide, Chemical compound, Titanium dioxide, Titanium, Corrosion

93

Food-grade titanium dioxide (TiO2) containing a nanoscale particle fraction (TiO2-NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO2-NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer’s patches (PP) as observed with the TiO2-NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO2-treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO2 from dietary sources.

Concepts: Immune system, Inflammation, Monocyte, Titanium dioxide, Titanium, Rutile, Pigment, Titanium tetrachloride