Discover the most talked about and latest scientific content & concepts.

Concept: Time series


 To estimate how far changes in the prevalence of electronic cigarette (e-cigarette) use in England have been associated with changes in quit success, quit attempts, and use of licensed medication and behavioural support in quit attempts.

Concepts: Statistics, Smoking, Tobacco, Cigarette, Nicotine, Smoking cessation, Electronic cigarette, Time series


BACKGROUND: There is an increasing need for processing and understanding relevant information generated by the systematic collection of public health data over time. However, the analysis of those time series usually requires advanced modeling techniques, which are not necessarily mastered by staff, technicians and researchers working on public health and epidemiology. Here a user-friendly tool, EPIPOI, is presented that facilitates the exploration and extraction of parameters describing trends, seasonality and anomalies that characterize epidemiological processes. It also enables the inspection of those parameters across geographic regions. Although the visual exploration and extraction of relevant parameters from time series data is crucial in epidemiological research, until now it had been largely restricted to specialists. METHODS: EPIPOI is freely available software developed in Matlab (The Mathworks Inc) that runs both on PC and Mac computers. Its friendly interface guides users intuitively through useful comparative analyses including the comparison of spatial patterns in temporal parameters. RESULTS: EPIPOI is able to handle complex analyses in an accessible way. A prototype has already been used to assist researchers in a variety of contexts from didactic use in public health workshops to the main analytical tool in published research. CONCLUSIONS: EPIPOI can assist public health officials and students to explore time series data using a broad range of sophisticated analytical and visualization tools. It also provides an analytical environment where even advanced users can benefit by enabling a higher degree of control over model assumptions, such as those associated with detecting disease outbreaks and pandemics.

Concepts: Public health, Health, Epidemiology, Time series, Biostatistics, Outbreak, The MathWorks, MATLAB


 To quantify how a period of intense media coverage of controversy over the risk:benefit balance of statins affected their use.

Concepts: Statistics, Series, Statin, Calculus, Time series, Seasonality


Many local authorities in England and Wales have reduced street lighting at night to save money and reduce carbon emissions. There is no evidence to date on whether these reductions impact on public health. We quantified the effect of 4 street lighting adaptation strategies (switch off, part-night lighting, dimming and white light) on casualties and crime in England and Wales.

Concepts: Carbon dioxide, Light, Carbon, United Kingdom, England, Wales, Time series, Coal


The world’s coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world’s most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985-2012), we show a major decline in coral cover from 28.0% to 13.8% (0.53% y(-1)), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%, and 10% of the respective estimated losses, amounting to 3.38% y(-1) mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85% y(-1), demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y(-1), despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improving water quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase.

Concepts: Time, Coral, Coral reef, Coral bleaching, Time series, Great Barrier Reef, Coral reefs, Crown-of-thorns starfish


Long-range correlated temporal fluctuations in the beats of musical rhythms are an inevitable consequence of human action. According to recent studies, such fluctuations also lead to a favored listening experience. The scaling laws of amplitude variations in rhythms, however, are widely unknown. Here we use highly sensitive onset detection and time series analysis to study the amplitude and temporal fluctuations of Jeff Porcaro’s one-handed hi-hat pattern in “I Keep Forgettin'”-one of the most renowned 16th note patterns in modern drumming. We show that fluctuations of hi-hat amplitudes and interbeat intervals (times between hits) have clear long-range correlations and short-range anticorrelations separated by a characteristic time scale. In addition, we detect subtle features in Porcaro’s drumming such as small drifts in the 16th note pulse and non-trivial periodic two-bar patterns in both hi-hat amplitudes and intervals. Through this investigation we introduce a step towards statistical studies of the 20th and 21st century music recordings in the framework of complex systems. Our analysis has direct applications to the development of drum machines and to drumming pedagogy.

Concepts: Statistics, Rhythm, Time series, 21st century, Musical notation, Drum, Drum kit, Drummer


To complete a 30-year interrupted time-series analysis of the impact of austerity-related and prosperity-related events on the occurrence of suicide across Greece.

Concepts: Time series


To examine the relation between income inequality and school bullying (perpetration, victimisation and bully/victims) and explore whether the relation is attributable to international differences in violent crime.

Concepts: Crime, Violent crime, Time series, Economic inequality, Social psychology, Bullying


Electrocardiogram (ECG) signals are difficult to interpret, and clinicians must undertake a long training process to learn to diagnose diabetes from subtle abnormalities in these signals. To facilitate these diagnoses, we have developed a technique based on the heart rate variability signal obtained from ECG signals. This technique uses digital signal processing methods and, therefore, automates the detection of diabetes from ECG signals. In this paper, we describe the signal processing techniques that extract features from heart rate (HR) signals and present an analysis procedure that uses these features to diagnose diabetes. Through statistical analysis, we have identified the correlation dimension, Poincaré geometry properties (SD2), and recurrence plot properties (REC, DET, L (mean)) as useful features. These features differentiate the HR data of diabetic patients from those of patients who do not have the illness, and have been validated by using the AdaBoost classifier with the perceptron weak learner (yielding a classification accuracy of 86%). We then developed a novel diabetic integrated index (DII) that is a combination of these nonlinear features. The DII indicates whether a particular HR signal was taken from a person with diabetes. This index aids the automatic detection of diabetes, thereby allowing a more objective assessment and freeing medical professionals for other tasks.

Concepts: Diagnosis, Cardiology, Chaos theory, Signal processing, Time series, Digital signal processing, Heart rate monitor, Recurrence plot


SUMMARY The most common methods for evaluating interventions to reduce the rate of new Staphylococcus aureus (MRSA) infections in hospitals use segmented regression or interrupted time-series analysis. We describe approaches to evaluating interventions introduced in different healthcare units at different times. We compare fitting a segmented Poisson regression in each hospital unit with pooling the individual estimates by inverse variance. An extension of this approach to accommodate potential heterogeneity allows estimates to be calculated from a single statistical model: a ‘stacked’ model. It can be used to ascertain whether transmission rates before the intervention have the same slope in all units, whether the immediate impact of the intervention is the same in all units, and whether transmission rates have the same slope after the intervention. The methods are illustrated by analyses of data from a study at a Veterans Affairs hospital. Both approaches yielded consistent results. Where feasible, a model adjusting for the unit effect should be fitted, or if there is heterogeneity, an analysis incorporating a random effect for units may be appropriate.

Concepts: Regression analysis, Statistics, Staphylococcus aureus, Infection, Time series, Trend estimation, Singular spectrum analysis