SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Timbre

218

The perception of the pitch of harmonic complex sounds is a crucial function of human audition, especially in music and speech processing. Whether the underlying mechanisms of pitch perception are unique to humans, however, is unknown. Based on estimates of frequency resolution at the level of the auditory periphery, psychoacoustic studies in humans have revealed several primary features of central pitch mechanisms. It has been shown that (i) pitch strength of a harmonic tone is dominated by resolved harmonics; (ii) pitch of resolved harmonics is sensitive to the quality of spectral harmonicity; and (iii) pitch of unresolved harmonics is sensitive to the salience of temporal envelope cues. Here we show, for a standard musical tuning fundamental frequency of 440 Hz, that the common marmoset (Callithrix jacchus), a New World monkey with a hearing range similar to that of humans, exhibits all of the primary features of central pitch mechanisms demonstrated in humans. Thus, marmosets and humans may share similar pitch perception mechanisms, suggesting that these mechanisms may have emerged early in primate evolution.

Concepts: Sound, Pitch, Music, Callithrix, Timbre, Acoustics, Musical tuning, Primate

188

Timbre is the attribute of sound that allows humans and other animals to distinguish among different sound sources. Studies based on psychophysical judgments of musical timbre, ecological analyses of sound’s physical characteristics as well as machine learning approaches have all suggested that timbre is a multifaceted attribute that invokes both spectral and temporal sound features. Here, we explored the neural underpinnings of musical timbre. We used a neuro-computational framework based on spectro-temporal receptive fields, recorded from over a thousand neurons in the mammalian primary auditory cortex as well as from simulated cortical neurons, augmented with a nonlinear classifier. The model was able to perform robust instrument classification irrespective of pitch and playing style, with an accuracy of 98.7%. Using the same front end, the model was also able to reproduce perceptual distance judgments between timbres as perceived by human listeners. The study demonstrates that joint spectro-temporal features, such as those observed in the mammalian primary auditory cortex, are critical to provide the rich-enough representation necessary to account for perceptual judgments of timbre by human listeners, as well as recognition of musical instruments.

Concepts: Auditory system, Cerebrum, Timbre, Musical instrument, Temporal lobe, Brain, Sound, Music

47

The auditory environment typically contains several sound sources that overlap in time, and the auditory system parses the complex sound wave into streams or voices that represent the various sound sources. Music is also often polyphonic. Interestingly, the main melody (spectral/pitch information) is most often carried by the highest-pitched voice, and the rhythm (temporal foundation) is most often laid down by the lowest-pitched voice. Previous work using electroencephalography (EEG) demonstrated that the auditory cortex encodes pitch more robustly in the higher of two simultaneous tones or melodies, and modeling work indicated that this high-voice superiority for pitch originates in the sensory periphery. Here, we investigated the neural basis of carrying rhythmic timing information in lower-pitched voices. We presented simultaneous high-pitched and low-pitched tones in an isochronous stream and occasionally presented either the higher or the lower tone 50 ms earlier than expected, while leaving the other tone at the expected time. EEG recordings revealed that mismatch negativity responses were larger for timing deviants of the lower tones, indicating better timing encoding for lower-pitched compared with higher-pitch tones at the level of auditory cortex. A behavioral motor task revealed that tapping synchronization was more influenced by the lower-pitched stream. Results from a biologically plausible model of the auditory periphery suggest that nonlinear cochlear dynamics contribute to the observed effect. The low-voice superiority effect for encoding timing explains the widespread musical practice of carrying rhythm in bass-ranged instruments and complements previously established high-voice superiority effects for pitch and melody.

Concepts: Pitch, Timbre, Brain, Rhythm, Interval, Sound, Auditory system, Electroencephalography

32

Some combinations of musical notes sound pleasing and are termed “consonant,” but others sound unpleasant and are termed “dissonant.” The distinction between consonance and dissonance plays a central role in Western music, and its origins have posed one of the oldest and most debated problems in perception. In modern times, dissonance has been widely believed to be the product of “beating”: interference between frequency components in the cochlea that has been believed to be more pronounced in dissonant than consonant sounds. However, harmonic frequency relations, a higher-order sound attribute closely related to pitch perception, has also been proposed to account for consonance. To tease apart theories of musical consonance, we tested sound preferences in individuals with congenital amusia, a neurogenetic disorder characterized by abnormal pitch perception. We assessed amusics' preferences for musical chords as well as for the isolated acoustic properties of beating and harmonicity. In contrast to control subjects, amusic listeners showed no preference for consonance, rating the pleasantness of consonant chords no higher than that of dissonant chords. Amusics also failed to exhibit the normally observed preference for harmonic over inharmonic tones, nor could they discriminate such tones from each other. Despite these abnormalities, amusics exhibited normal preferences and discrimination for stimuli with and without beating. This dissociation indicates that, contrary to classic theories, beating is unlikely to underlie consonance. Our results instead suggest the need to integrate harmonicity as a foundation of music preferences, and illustrate how amusia may be used to investigate normal auditory function.

Concepts: Timbre, Acoustics, Chord, Sound, Harmony, Harmonic series, Consonance and dissonance, Music

26

Objective This study aimed to compare the timbre recognition and preferences of young adolescents with cochlear implants (CIs) to that of adolescents with normal hearing (NH). Methods Nine Korean adolescents with CIs and 25 adolescents with NH participated in this study. After listening to each of four Western instruments and five traditional Korean instruments, participants were asked to identify presented instruments and rate how much they liked the timbres. Results The results showed that the CI group recognized instruments significantly less often than the NH group. They also tended to show a relatively higher recognition of the instruments bearing a rapid and strong attack time. With regard to timbre preferences, no significant differences were found between the groups. Discussion Young aolescents with CIs show potential for detecting salient features in sound information, especially instrumental timbre. This study indicates what can be considered to incorporate more sounds with varying origins and tone qualities into music perception and education for this population.

Concepts: Auditory system, Pitch, Sense, Music, Timbre, Sound

20

The voice is the most direct link we have to others' minds, allowing us to communicate using a rich variety of speech cues [1, 2]. This link is particularly critical early in life as parents draw infants into the structure of their environment using infant-directed speech (IDS), a communicative code with unique pitch and rhythmic characteristics relative to adult-directed speech (ADS) [3, 4]. To begin breaking into language, infants must discern subtle statistical differences about people and voices in order to direct their attention toward the most relevant signals. Here, we uncover a new defining feature of IDS: mothers significantly alter statistical properties of vocal timbre when speaking to their infants. Timbre, the tone color or unique quality of a sound, is a spectral fingerprint that helps us instantly identify and classify sound sources, such as individual people and musical instruments [5-7]. We recorded 24 mothers' naturalistic speech while they interacted with their infants and with adult experimenters in their native language. Half of the participants were English speakers, and half were not. Using a support vector machine classifier, we found that mothers consistently shifted their timbre between ADS and IDS. Importantly, this shift was similar across languages, suggesting that such alterations of timbre may be universal. These findings have theoretical implications for understanding how infants tune in to their local communicative environments. Moreover, our classification algorithm for identifying infant-directed timbre has direct translational implications for speech recognition technology.

Concepts: Speech recognition, Music, Timbre, Human voice, Communication, Pitch, Sound, Language

12

The organization of human auditory cortex remains unresolved, due in part to the small stimulus sets common to fMRI studies and the overlap of neural populations within voxels. To address these challenges, we measured fMRI responses to 165 natural sounds and inferred canonical response profiles (“components”) whose weighted combinations explained voxel responses throughout auditory cortex. This analysis revealed six components, each with interpretable response characteristics despite being unconstrained by prior functional hypotheses. Four components embodied selectivity for particular acoustic features (frequency, spectrotemporal modulation, pitch). Two others exhibited pronounced selectivity for music and speech, respectively, and were not explainable by standard acoustic features. Anatomically, music and speech selectivity concentrated in distinct regions of non-primary auditory cortex. However, music selectivity was weak in raw voxel responses, and its detection required a decomposition method. Voxel decomposition identifies primary dimensions of response variation across natural sounds, revealing distinct cortical pathways for music and speech.

Concepts: Cerebral cortex, Voxel, Frequency, Brain, Timbre, Magnetic resonance imaging, Acoustics, Sound

7

Young children learn multiple cognitive skills concurrently (e.g., language and music). Evidence is limited as to whether and how learning in one domain affects that in another during early development. Here we assessed whether exposure to a tone language benefits musical pitch processing among 3-5-year-old children. More specifically, we compared the pitch perception of Chinese children who spoke a tone language (i.e., Mandarin) with English-speaking American children. We found that Mandarin-speaking children were more advanced at pitch processing than English-speaking children but both groups performed similarly on a control music task (timbre discrimination). The findings support the Pitch Generalization Hypothesis that tone languages drive attention to pitch in nonlinguistic contexts, and suggest that language learning benefits aspects of music perception in early development. A video abstract of this article can be viewed at: https://youtu.be/UY0kpGpPNA0.

Concepts: Musical tuning, Cognition, Psychology, Sound, Timbre, Tone, Pitch accent, Chinese language

5

Giant honeybees (Apis dorsata) nest in the open and have developed a wide array of strategies for colony defence, including the Mexican wave-like shimmering behaviour. In this collective response, the colony members perform upward flipping of their abdomens in coordinated cascades across the nest surface. The time-space properties of these emergent waves are response patterns which have become of adaptive significance for repelling enemies in the visual domain. We report for the first time that the mechanical impulse patterns provoked by these social waves and measured by laser Doppler vibrometry generate vibrations at the central comb of the nest at the basic (=‘natural’) frequency of 2.156 ± 0.042 Hz which is more than double the average repetition rate of the driving shimmering waves. Analysis of the Fourier spectra of the comb vibrations under quiescence and arousal conditions provoked by mass flight activity and shimmering waves gives rise to the proposal of two possible models for the compound physical system of the bee nest: According to the elastic oscillatory plate model, the comb vibrations deliver supra-threshold cues preferentially to those colony members positioned close to the comb. The mechanical pendulum model predicts that the comb vibrations are sensed by the members of the bee curtain in general, enabling mechanoreceptive signalling across the nest, also through the comb itself. The findings show that weak and stochastic forces, such as general quiescence or diffuse mass flight activity, cause a harmonic frequency spectrum of the comb, driving the comb as an elastic plate. However, shimmering waves provide sufficiently strong forces to move the nest as a mechanical pendulum. This vibratory behaviour may support the colony-intrinsic information hypothesis herein that the mechanical vibrations of the comb provoked by shimmering do have the potential to facilitate immediate communication of the momentary defensive state of the honeybee nest to the majority of its members.

Concepts: Harmonic, Doppler effect, Timbre, Vibration, Frequency, Beekeeping, Wave, Honey bee

4

Emotional communication in music depends on multiple attributes including psychoacoustic features and tonal system information, the latter of which is unique to music. The present study investigated whether congenital amusia, a lifelong disorder of musical processing, impacts sensitivity to musical emotion elicited by timbre and tonal system information. Twenty-six amusics and 26 matched controls made tension judgments on Western (familiar) and Indian (unfamiliar) melodies played on piano and sitar. Like controls, amusics used timbre cues to judge musical tension in Western and Indian melodies. While controls assigned significantly lower tension ratings to Western melodies compared to Indian melodies, thus showing a tonal familiarity effect on tension ratings, amusics provided comparable tension ratings for Western and Indian melodies on both timbres. Furthermore, amusics rated Western melodies as more tense compared to controls, as they relied less on tonality cues than controls in rating tension for Western melodies. The implications of these findings in terms of emotional responses to music are discussed.

Concepts: Tonic, Psychoacoustics, Klangfarbenmelodie, Emotion, Timbre, Tonality, Sound, Music