SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Tide

173

Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

Concepts: Solar variation, Wave, Flood, Climate, Tide, Storm surge, Climate change, Weather

93

Sound produced by fish spawning aggregations (FSAs) permits the use of passive acoustic methods to identify the timing and location of spawning. However, difficulties in relating sound levels to abundance have impeded the use of passive acoustics to conduct quantitative assessments of biomass. Here we show that models of measured fish sound production versus independently measured fish density can be generated to estimate abundance and biomass from sound levels at FSAs. We compared sound levels produced by spawning Gulf Corvina (Cynoscion othonopterus) with simultaneous measurements of density from active acoustic surveys in the Colorado River Delta, Mexico. During the formation of FSAs, we estimated peak abundance at 1.53 to 1.55 million fish, which equated to a biomass of 2,133 to 2,145 metric tons. Sound levels ranged from 0.02 to 12,738 Pa(2), with larger measurements observed on outgoing tides. The relationship between sound levels and densities was variable across the duration of surveys but stabilized during the peak spawning period after high tide to produce a linear relationship. Our results support the use of active acoustic methods to estimate density, abundance, and biomass of fish at FSAs; using appropriately scaled empirical relationships, sound levels can be used to infer these estimates.

Concepts: Cynoscion, Sound pressure, Approximation, Tide, Estimation, Colorado River, Sound, Acoustics

81

Sea star wasting disease (SSWD) first appeared in Oregon in April 2014, and by June had spread to most of the coast. Although delayed compared to areas to the north and south, SSWD was initially most intense in north and central Oregon and spread southward. Up to 90% of individuals showed signs of disease from June-August 2014. In rocky intertidal habitats, populations of the dominant sea star Pisaster ochraceus were rapidly depleted, with magnitudes of decline in density among sites ranging from -2x to -9x (59 to 84%) and of biomass from -2.6x to -15.8x (60 to 90%) by September 2014. The frequency of symptomatic individuals declined over winter and persisted at a low rate through the spring and summer 2015 (~5-15%, at most sites) and into fall 2015. Disease expression included six symptoms: initially with twisting arms, then deflation and/or lesions, lost arms, losing grip on substrate, and final disintegration. SSWD was disproportionally higher in orange individuals, and higher in tidepools. Although historically P. ochraceus recruitment has been low, from fall 2014 to spring 2015 an unprecedented surge of sea star recruitment occurred at all sites, ranging from ~7x to 300x greater than in 2014. The loss of adult and juvenile individuals in 2014 led to a dramatic decline in predation rate on mussels compared to the previous two decades. A proximate cause of wasting was likely the “Sea Star associated Densovirus” (SSaDV), but the ultimate factors triggering the epidemic, if any, remain unclear. Although warm temperature has been proposed as a possible trigger, SSWD in Oregon populations increased with cool temperatures. Since P. ochraceus is a keystone predator that can strongly influence the biodiversity and community structure of the intertidal community, major community-level responses to the disease are expected. However, predicting the specific impacts and time course of change across west coast meta-communities is difficult, suggesting the need for detailed coast-wide investigation of the effects of this outbreak.

Concepts: Apex predator, Oregon, Intertidal zone, Tide, Starfish, Tide pool, Asteroidea, Predation

56

Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent “circatidal” clock has been disputed, and it has been argued that tidal rhythms arise as a submultiple of a circadian clock, operating in dual oscillators whose outputs are held in antiphase i.e., ∼12.4 hr apart.

Concepts: Species, Biology, Intertidal ecology, Intertidal zone, Tide

48

Tidal flooding is among the most tangible present-day effects of global sea level rise. Here, we utilize a set of NOAA tide gauges along the U.S. East and Gulf Coasts to evaluate the potential impact of future sea level rise on the frequency and severity of tidal flooding. Using the 2001-2015 time period as a baseline, we first determine how often tidal flooding currently occurs. Using localized sea level rise projections based on the Intermediate-Low, Intermediate-High, and Highest projections from the U.S. National Climate Assessment, we then determine the frequency and extent of such flooding at these locations for two near-term time horizons: 2030 and 2045. We show that increases in tidal flooding will be substantial and nearly universal at the 52 locations included in our analysis. Long before areas are permanently inundated, the steady creep of sea level rise will force many communities to grapple with chronic high tide flooding in the next 15 to 30 years.

Concepts: Sea level, Nautical chart, Coast, Moon, Storm surge, Tide, Oceanography

42

Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth’s coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale “nuisance flooding,” often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.

Concepts: Thames Barrier, Coast, Tide, Oceanography, Geology, Flood, Water, Storm surge

35

Ocean acidification (OA) projections are primarily based on open ocean environments, despite the ecological importance of coastal systems in which carbonate dynamics are fundamentally different. Using temperate tide pools as a natural laboratory, we quantified the relative contribution of community composition, ecosystem metabolism, and physical attributes to spatiotemporal variability in carbonate chemistry. We found that biological processes were the primary drivers of local pH conditions. Specifically, non-encrusting producer-dominated systems had the highest and most variable pH environments and the highest production rates, patterns that were consistent across sites spanning 11° of latitude and encompassing multiple gradients of natural variability. Furthermore, we demonstrated a biophysical feedback loop in which net community production increased pH, leading to higher net ecosystem calcification. Extreme spatiotemporal variability in pH is, thus, both impacting and driven by biological processes, indicating that shifts in community composition and ecosystem metabolism are poised to locally buffer or intensify the effects of OA.

Concepts: Climate, PH, Ocean, Ecology, Oceanography, Tide, Natural environment, Carbonic acid

33

A new dinosaur tracksite in the Vale de Meios quarry (Serra de Aire Formation, Bathonian, Portugal)preserves more than 700 theropod tracks. They are organized in at least 80 unidirectional trackways arranged in a bimodal orientation pattern (W/NW and E/SE). Quantitative and qualitative comparisons reveal that the large tridactyl, elongated and asymmetric tracks resemble the typical Late Jurassic-Early Cretaceous Megalosauripus ichnogenus in all morphometric parameters. Few of the numerous tracks are preserved as elite tracks while the rest are preserved as different gradients of modified true tracks according to water content, erosive factors, radial fractures and internal overtrack formations. Taphonomical determinations are consistent with paleoenvironmental observations that indicate an inter-tidal flat located at the margin of a coastal barrier. The Megalosauripus tracks represent the oldest occurrence of this ichnotaxon and are attributed to large megalosaurid dinosaurs. Their occurrence in Vale de Meios tidal flat represents the unique paleoethological evidence of megalosaurids moving towards the lagoon, most likley during the low tide periods with feeding purposes.

Concepts: Theropoda, Geodesy, Coast, Megalosaurus, Tide, Intertidal zone, Jurassic, Dinosaur

28

The lunar semidiurnal influence is already known for tidal rivers. The moon also influences inland rivers at a monthly scale through precipitation. We show that, for some non-tidal rivers, with special geological conditions, the lunar semidiurnal tidal oscillation can be detected. The moon has semidiurnal tidal influence on groundwater, which will then export it to streamflow. Long time series with high frequency measurements were analysed by using standard wavelet analysis techniques. The lunar semidiurnal signal explains the daily double-peaked river level evolution of inland gauges. It is stronger where springs with high discharge occur, especially in the area of Edwards-Trinity and Great Artesian Basin aquifers and in areas with dolomite/limestone strata. The average maximum semidiurnal peaks range between 0.002 and 0.1 m. This secondary effect of the earth tides has important implications in predicting high resolution hydrographs, in the water cycle of wetlands and in water management.

Concepts: Precipitation, Tide, Groundwater, Water, Water cycle, Moon, Earth, Hydrology

27

In coastal environments, evaporation is an important driver of subsurface salinity gradients in marsh systems. However, it has not been addressed in the intertidal zone of sandy beaches. Here, we used field data on an estuarine beach foreshore with numerical simulations to show that evaporation causes upper intertidal zone pore-water salinity to be double that of seawater. We found the increase in pore-water salinity mainly depends on air temperature and relative humidity, and tide and wave actions dilute a fraction of the high salinity plume, resulting in a complex process. This is in contrast to previous studies that consider seawater as the most saline source to a coastal aquifer system, thereby concluding that seawater infiltration always increases pore-water salinity by seawater-groundwater mixing dynamics. Our results demonstrate the combined effects of evaporation and tide and waves on subsurface salinity distribution on a beach face. We anticipate our quantitative investigation will shed light on the studies of salt-affected biological activities in the intertidal zone. It also impacts our understanding of the impact of global warming; in particular, the increase in temperature does not only shift the saltwater landward, but creates a different salinity distribution that would have implications on intertidal biological zonation.

Concepts: Tide pool, Coast, Beach, Shore, Coastal geography, Tide, Intertidal zone, Water