SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Thymidine kinase

172

Thymidine kinase 1 (TK1) is a salvage enzyme involved in DNA precursor synthesis, and its expression is proliferation dependent. A serum form of TK1 has been used as a biomarker in human medicine for many years and more recently to monitor canine lymphoma. Canine TK1 has not been cloned and studied. Therefore, dog and human TK1 cDNA were cloned and expressed, and the recombinant enzymes characterized. The serum and cellular forms of canine and human TK1 were studied by size-exclusion chromatography and the level of TK1 protein was determined using polyclonal and monoclonal anti-TK1 antibodies.

Concepts: DNA, Protein, Gene expression, Cell, Transcription, Molecular biology, Enzyme, Thymidine kinase

6

Thymidine kinase (TK1) is a biomarker that correlates well with diagnosis and prognosis in certain canine cancers. Canine C-reactive protein (cCRP) is a widely accepted marker of inflammation correlated with increased risk and severity of various diseases. We evaluated serum TK1 and cCRP concentrations in apparently healthy dogs (n = 360). All dogs were followed up for a minimum of 6 months by health questionnaire. All dogs with cancer were identified using a proprietary dual-biomarker algorithm [termed Neoplasia Index (NI)]. Specificity of positive NI is 0.91 and high positive is 0.98. All-cause mortality was 20% in dogs with elevated cCRP and 3% in dogs with low cCRP. The performance of serum TK1 and cCRP as tools for screening for occult cancer is improved when evaluated together. Serum TK1 and cCRP (unified in the NI) are useful in the screening of occult canine cancer. cCRP is useful in screening for other serious diseases.

Concepts: Inflammation, Epidemiology, Cancer, Disease, Infectious disease, C-reactive protein, Thymidine kinase, Thymidine kinase 1

3

The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis.

Concepts: Neuron, Virus, Hippocampus, Herpes simplex, Neurogenesis, Granule cell, Olfactory bulb, Thymidine kinase

2

Tunneling nanotubes (TNTs) are ultrafine, filamentous actin-based cytoplasmic extensions which form spontaneously to connect cells at short and long-range distances. We have previously described long-range intercellular communication via TNTs connecting mesothelioma cells in vitro and demonstrated TNTs in intact tumors from patients with mesothelioma. Here, we investigate the ability of TNTs to mediate a viral thymidine kinase based bystander effect after oncolytic viral infection and administration of the nucleoside analog ganciclovir. Using confocal microscopy we assessed the ability of TNTs to propagate enhanced green fluorescent protein (eGFP), which is encoded by the herpes simplex virus NV1066, from infected to uninfected recipient cells. Using time-lapse imaging, we observed eGFP expressed in infected cells being transferred via TNTs to noninfected cells; additionally, increasing fluorescent activity in recipient cells indicated cell-to-cell transmission of the eGFP-expressing NV1066 virus had also occurred. TNTs mediated cell death as a form of direct cell-to-cell transfer following viral thymidine kinase mediated activation of ganciclovir, inducing a unique long-range form of the bystander effect through transmission of activated ganciclovir to nonvirus-infected cells. Thus, we provide proof-of-principle demonstration of a previously unknown and alternative mechanism for inducing apoptosis in noninfected recipient cells. The conceptual advance of this work is that TNTs can be harnessed for delivery of oncolytic viruses and of viral thymidine kinase activated drugs to amplify the bystander effect between cancer cells over long distances in stroma-rich tumor microenvironments.

Concepts: Protein, Cancer, Oncology, Virus, Herpes simplex, Viruses, Thymidine kinase, Viral entry

1

Thymidine kinase 1 (TK1) is a DNA precursor enzyme whose expression is closely correlated with cell proliferation and cell turnover. Sensitive serum TK1 activity assays have been used for monitoring and prognosis of hematological malignancies in both humans and dogs. Here we describe the development of a specific sandwich TK1-ELISA for the quantification of TK1 protein levels in sera from dogs with different malignancies. A combination of rabbit polyclonal anti-dog TK1 antibody and a mouse monoclonal anti-human TK1 antibody was used. Different concentrations of recombinant canine TK1 was used as standard. Clinical evaluation of the ELISA was done by using sera from 42 healthy dogs, 43 dogs with hematological tumors and 55 with solid tumors. An established [3H]-dThd phosphorylation assay was used to determine the TK1 activity levels in the same sera. The mean TK1 activities in dogs with hematological tumors were significantly higher than those found in healthy dogs. In agreement with earlier studies, no significant difference was observed in serum TK1 activities between healthy dogs and dogs with solid tumors. However, the mean TK1 protein levels determined by new TK1-ELISA were significantly higher not only in hematological tumors but also in solid tumors compared to healthy dogs (mean ± SD = 1.30 ± 1.16, 0.67 ± 0.55 and 0.27± 0.10 ng/mL, respectively). Moreover, TK1-ELISA had significantly higher ability to distinguish lymphoma cases from healthy based on receiver operating characteristic analyses (area under the curve, AUC, of 0.96) to that of the activity assay (AUC, 0.84). Furthermore, fluctuations in TK1 protein levels during the course of chemotherapy in dogs with lymphoma closely associated with clinical outcome. Overall, the TK1-ELISA showed significant linear correlation with the TK1 activity assay (rs = 0.6, p<0.0001). Thus, the new TK1-ELISA has sufficient sensitivity and specificity for routine clinical use in veterinary oncology.

Concepts: Cancer, Oncology, Type I and type II errors, Chemotherapy, Sensitivity and specificity, ELISA, Hematological malignancy, Thymidine kinase

1

Escape from immune detection favors both tumor survival and progression, and new approaches to circumvent this are essential to combat cancers. Non-virulent, tumor-tropic bacteria, such as Salmonella typhimurium, can unmask a tumor by transforming it into a site of inflammation, however, Salmonella’s non-specific invasiveness leads to off-target effects diluting its therapeutic efficacy and making its use in human patients inherently risky. Here, we demonstrate that Salmonella tumor-specificity can be significantly improved via a surface expressed single-domain antibody directed to a tumor-associated antigen (CD20). Antibody-dependent bacterial targeting specifies the infection of CD20+ lymphoma cells in vitro and in vivo, while significantly diminishing non-specific cell invasion. Indeed, CD20-targeted Salmonella were less generally invasive, even in organs that normally serve as physiological reservoirs. Furthermore, tumor-specific Salmonella engineered to carry the Herpes Simplex Virus Thymidine Kinase (HSV-TK) pro-drug converting enzyme effectively treat human lymphoma xenografts when co-administered intra-tumorally or intra-venously with ganciclovir in mice lacking a functional adaptive immune system. Therefore, tumor-targeted Salmonella could prove effective even in those patients displaying a debilitated immune system, which is often the case with late-stage cancers. Altogether, antibody-displaying Salmonella vectors can mediate a tumor-specific response and rejection with few detectable side effects while specifically delivering cytotoxic payloads.

Concepts: Immune system, Antibody, Cancer, Bacteria, Virus, Antigen, Herpes simplex, Thymidine kinase

0

Though cell transplantation is becoming an attractive therapeutic method, uncontrolled cell proliferation or overexpression of cellular functions could cause adverse effects. These unfavorable outcomes could be avoided by regulating the proliferation or functioning of transplanted cells. In this study, we used a combination of the herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, and ganciclovir (GCV) to control the proliferation and functioning of insulin-secreting cells after transplantation in diabetic mice. Mouse pancreatic β cell line MIN6 cells were selected as insulin-secreting cells for transfection with the HSVtk gene to obtain MIN6/HSVtk cells. Proliferation of MIN6/HSVtk cells was suppressed by GCV in a concentration-dependent manner; 0.25 μg/mL GCV maintained a constant number of MIN6/HSVtk cells for at least 16 days. MIN6 or MIN6/HSVtk cells were then transplanted to streptozotocin-induced diabetic mice. Mice transplanted with MIN6 cells exhibited hypoglycemia irrespective of GCV administration. In contrast, normal (around 150 mg/dL) blood glucose levels were maintained in mice transplanted with MIN6/HSVtk cells by a daily administration of 50 mg/kg of GCV. These results indicate that controlling the proliferation and functioning of HSVtk gene-expressing cells by GCV could greatly improve the usefulness and safety of cell-based therapy.

Concepts: Gene, Cell, Bacteria, Enzyme, Virus, Blood sugar, Herpes simplex, Thymidine kinase

0

Although gene transfer to hematopoietic stem cells (HSCs) has shown therapeutic efficacy in recent trials for several individuals with inherited disorders, transduction incompleteness of the HSC population remains a hurdle to yield a cure for all patients with reasonably low integrated vector numbers. In previous attempts at HSC selection, massive loss of transduced HSCs, contamination with non-transduced cells, or lack of applicability to large cell populations has rendered the procedures out of reach for human applications. Here, we fused codon-optimized puromycin N-acetyltransferase to herpes simplex virus thymidine kinase. When expressed from a ubiquitous promoter within a complex lentiviral vector comprising the βAT87Q-globin gene, viral titers and therapeutic gene expression were maintained at effective levels. Complete selection and preservation of transduced HSCs were achieved after brief exposure to puromycin in the presence of MDR1 blocking agents, suggesting the procedure’s suitability for human clinical applications while affording the additional safety of conditional suicide.

Concepts: DNA, Gene, Genetics, Gene expression, Bacteria, Virus, Herpes simplex, Thymidine kinase

0

Therapy or prophylaxis of herpes simplex virus type 2 (HSV-2) infections with the nucleoside analog aciclovir (ACV) can lead to the emergence of drug-resistant HSV-2 strains, particularly in immunocompromised patients. In this context, multiple amino acid (aa) changes can accumulate in the ACV-converting viral thymidine kinase (TK) which hampers sequence-based diagnostics significantly. In this study, the so far unknown or still doubted relevance of several individual aa changes for drug resistance in HSV-2 was clarified. For this purpose, ten recombinant fluorescent HSV-2 strains differing in the respective aa within their TK were constructed using the bacterial artificial chromosome (BAC) pHSV2(MS)Lox. Similar TK expression levels and similar replication behavior patterns were demonstrated for the mutants as compared to the unmodified BAC-derived HSV-2 strain. Subsequently, the resulting strains were tested for their susceptibility to ACV as well as penciclovir (PCV) in parallel to a modified cytopathic effect (CPE) inhibition assay and by determining the relative fluorescence intensity (quantified using units, RFU) as a measure for the viral replication capacity. While aa changes Y53N and R221H conferred ACV resistance with cross-resistance to PCV, the aa changes G25A, G39E, T131M, Y133F, G150D, A157T, R248W, and L342W maintained a susceptible phenotype against both antivirals. The CPE inhibition assay and the measurement of relative fluorescence intensity yielded comparable results for the phenotypic testing of recombinant viruses. The latter test showed some technical advantages. In conclusion, the significance of single aa changes in HSV-2 TK on ACV/PCV resistance was clarified by the construction and phenotypic testing of recombinant viral strains. This was facilitated by the fluorescence based method.

Concepts: Gene, Microbiology, Virus, Influenza, Herpes simplex virus, Herpes simplex, Virology, Thymidine kinase

0

Current immunotherapy has limited efficacy on metastatic castrate-resistant prostate cancer (mCRPC). We therefore sought to improve the antitumor ability of mCRPC patient-derived CD8+ T-cells by the endowment of specificity to prostate-specific membrane antigen (PSMA) and insensitivity to immunosuppressant molecule transforming growth factor-β (TGF-ß) under the control of herpes simplex virus-1 thymidine kinase. CD8+ T-cells were collected by leukapheresis and cultured in a Food and Drug Administration-approved Cell Processing Work Station. We developed a chimeric antigen receptor retroviral construct using an anti-PSMA chimeric immunoglobulin-T-cell receptor(ζ) gene (PZ1) and dominant negative TGF-ß type II receptor (TßRIIDN), that could induce CD8+ T-cells to be PSMA reactive and insensitive to TGF-ß. Cr51 release assay was performed on PC-3 and PC-3-PSMA. The further antitumor functions of PSMA-specific, TGF-ß insensitive CD8+ T-cells was evaluated using an immunodeficient RAG-1-/- mouse model. We found PSMA-specific, TGF-ß insensitive CD8+ T-cells from mCRPC were expanded with strong expression of PZ1 and thymidine kinase genes, and their growth was not suppressed by TGF-ß. The survival of these cells decreased sharply after treatment with ganciclovir. Treatment of PSMA-specific TGF-ß, insensitive CD8+ T-cells was associated with 61.58% specific lysis on PC-3-PSMA, and significantly suppressed PC3-PSMA tumor compared with the PC3 tumor. A large amount of tumor apoptosis and CD8+ T-cell infiltration were found only in the PC3-PSMA tumor. This study verified that PSMA-specific, TGF-ß insensitive CD8+ T-cells derived from mCRPC patients could be successfully expanded and used to overcome the immunosuppressive effects of the tumor microenvironment to control PSMA-expressing PC in vitro and in vivo. This may provide a promising approach for men with mCRPC who fail androgen deprivation therapy.

Concepts: Immune system, Cancer, Metastasis, Oncology, Prostate cancer, Herpes simplex, Thymidine kinase, Prostate specific membrane antigen