Discover the most talked about and latest scientific content & concepts.

Concept: Three Mile Island accident



The nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 caused partial meltdowns of three reactors. During the meltdowns, a type of condensed particle, a caesium-rich micro-particle (CsMP), formed inside the reactors via unknown processes. Here we report the chemical and physical processes of CsMP formation inside the reactors during the meltdowns based on atomic-resolution electron microscopy of CsMPs discovered near the FDNPP. All of the CsMPs (with sizes of 2.0-3.4 μm) comprise SiO2 glass matrices and ~10-nm-sized Zn-Fe-oxide nanoparticles associated with a wide range of Cs concentrations (1.1-19 wt% Cs as Cs2O). Trace amounts of U are also associated with the Zn-Fe oxides. The nano-texture in the CsMPs records multiple reaction-process steps during meltdown in the severe FDNPP accident: Melted fuel (molten core)-concrete interactions (MCCIs), incorporating various airborne fission product nanoparticles, including CsOH and CsCl, proceeded via SiO2 condensation over aggregates of Zn-Fe oxide nanoparticles originating from the failure of the reactor pressure vessels. Still, CsMPs provide a mechanism by which volatile and low-volatility radionuclides such as U can reach the environment and should be considered in the migration model of Cs and radionuclides in the current environment surrounding the FDNPP.

Concepts: Nuclear safety, Uranium, Three Mile Island accident, Nuclear physics, Plutonium, Nuclear fission, Nuclear meltdown, Chernobyl disaster


Following the massive earthquake that struck eastern Japan on March 11, 2011, a nuclear reactor core meltdown occurred at the Fukushima Daiichi Nuclear Power Plant, operated by Tokyo Electric Power Company, and was followed by the release of large amounts of radioactive materials. The objective of this study was to measure the concentration of radiocesium (134)Cs and (137)Cs in the muscle of Japanese monkeys (Macaca fuscata) inhabiting the forest area of Fukushima City and to determine the change in concentration over time as well as the relationship with the level of soil contamination. Cesium concentrations in the muscle of monkeys captured at locations with 100,000-300,000 Bq/m(2) were 6,000-25,000 Bq/kg in April 2011 and decreased over 3 months to around 1,000 Bq/kg. However, the concentration increased again to 2,000-3,000 Bq/kg in some animals during and after December 2011 before returning to 1,000 Bq/kg in April 2012, after which it remained relatively constant. This pattern of change in muscle radiocesium concentration was similar to that of the change in radiocesium concentration in atmospheric fallout. Moreover, the monkeys feed on winter buds and the cambium layer of tree bark potentially containing higher concentrations of radiocesium than that in the diet during the rest of the year. The muscle radiocesium concentration in the monkeys related significantly with the level of soil contamination at the capture locations.

Concepts: Lists of nuclear disasters and radioactive incidents, Primate, Nuclear technology, Three Mile Island accident, Nuclear safety, Nuclear power, Electricity generation, Chernobyl disaster


Five years have passed since the Great East Japan Earthquake and the subsequent Fukushima Daiichi Nuclear Power Plant accident on 11 March 2011. Countermeasures aimed at human protection during the emergency period, including evacuation, sheltering and control of the food chain were implemented in a timely manner by the Japanese Government. However, there is an apparent need for improvement, especially in the areas of nuclear safety and protection, and also in the management of radiation health risk during and even after the accident. Continuous monitoring and characterisation of the levels of radioactivity in the environment and foods in Fukushima are now essential for obtaining informed consent to the decisions on living in the radio-contaminated areas and also on returning back to the evacuated areas once re-entry is allowed; it is also important to carry out a realistic assessment of the radiation doses on the basis of measurements. Until now, various types of radiation health risk management projects and research have been implemented in Fukushima, among which the Fukushima Health Management Survey is the largest health monitoring project. It includes the Basic Survey for the estimation of external radiation doses received during the first 4 months after the accident and four detailed surveys: thyroid ultrasound examination, comprehensive health check-up, mental health and lifestyle survey, and survey on pregnant women and nursing mothers, with the aim to prospectively take care of the health of all the residents of Fukushima Prefecture for a long time. In particular, among evacuees of the Fukushima Nuclear Power Plant accident, concern about radiation risk is associated with psychological stresses. Here, ongoing health risk management will be reviewed, focusing on the difficult challenge of post-disaster recovery and resilience in Fukushima.

Concepts: Coal, Nuclear safety, Government of Japan, Three Mile Island accident, Management, Prefectures of Japan, Chernobyl disaster, Nuclear power


The distribution of radiocesium was examined in bamboo shoots, Phyllostachys pubescens, collected from 10 sites located some 41 to 1140 km from the Fukushima Daiichi nuclear power plant, Japan, in the Spring of 2012, 1 year after the Fukushima nuclear accident. Maximum activity concentrations for radiocesium 134Cs and 137Cs in the edible bamboo shoot parts, 41 km away from the Fukushima Daiichi plant, were in excess of 15.3 and 21.8 kBq/kg (dry weight basis; 1.34 and 1.92 kBq/kg, fresh weight), respectively. In the radiocesium-contaminated samples, the radiocesium activities were higher in the inner tip parts, including the upper edible parts and the apical culm sheath, than in the hardened culm sheath and underground basal parts. The radiocesium/potassium ratios also tended to be higher in the inner tip parts. The radiocesium activities increased with bamboo shoot length in another bamboo species, Phyllostachys bambusoides, suggesting that radiocesium accumulated in the inner tip parts during growth of the shoots.

Concepts: Nuclear Regulatory Commission, Lists of nuclear disasters and radioactive incidents, Nuclear power, Nuclear safety, Chernobyl disaster, Coal, Three Mile Island accident, Phyllostachys edulis


After the 2011 Fukushima Daiichi nuclear power plant accident, little information has been available on individual doses from external exposure among residents living in radioactively contaminated areas near the nuclear plant; in the present study we evaluated yearly changes in the doses from external exposure after the accident and the effects of decontamination on external exposure. This study considered all children less than 16 years of age in Soma City, Fukushima who participated in annual voluntary external exposure screening programs during the five years after the accident (n = 5,363). In total, 14,405 screening results were collected. The median participant age was eight years. The geometric mean levels of annual additional doses from external exposure attributable to the Fukushima accident, decreased each year: 0.60 mSv (range: not detectable (ND)-4.29 mSv), 0.37 mSv (range: ND-3.61 mSv), 0.22 mSv (range: ND-1.44 mSv), 0.20 mSv (range: ND-1.87 mSv), and 0.17 mSv (range: ND-0.85 mSv) in 2011, 2012, 2013, 2014, and 2015, respectively. The proportion of residents with annual additional doses from external exposure of more than 1 mSv dropped from 15.6% in 2011 to zero in 2015. Doses from external exposure decreased more rapidly than those estimated from only physical decay, even in areas without decontamination (which were halved in 395 days from November 15, 2011), presumably due to the weathering effects. While the ratios of geometric mean doses immediately after decontamination to before were slightly lower than those during the same time in areas without decontamination, annual additional doses reduced by decontamination were small (0.04-0.24 mSv in the year of immediately after decontamination was completed). The results of this study showed that the levels of external exposure among Soma residents less than 16 years of age decreased during the five years after the Fukushima Daiichi nuclear power plant accident. Decontamination had only limited and temporal effects on reducing individual external doses.

Concepts: Radioactive contamination, Sustainable energy, Nuclear Regulatory Commission, Nuclear fission, Nuclear power, Three Mile Island accident, Nuclear safety, Chernobyl disaster


It is well known from the experience after the 1986 accident at the Chernobyl Nuclear Power Plant that radiocesium tends to concentrate in wild mushrooms. In this study, we collected wild mushrooms from the Kawauchi Village of Fukushima Prefecture, located within 30 km of the Fukushima Daiichi Nuclear Power Plant, and evaluated their radiocesium concentrations to estimate the risk of internal radiation exposure in local residents. We found that radioactive cesium exceeding 100 Bq/kg was detected in 125 of 154 mushrooms (81.2%). We calculated committed effective doses based on 6,278 g per year (age > 20 years, 17.2 g/day), the average intake of Japanese citizens, ranging from doses of 0.11-1.60 mSv, respectively. Although committed effective doses are limited even if residents eat contaminated foods several times, we believe that comprehensive risk-communication based on the results of the radiocesium measurements of food, water, and soil is necessary for the recovery of Fukushima after this nuclear disaster.

Concepts: Prefectures of Japan, Nuclear fission, Radioactive contamination, Lists of nuclear disasters and radioactive incidents, Nuclear power, Three Mile Island accident, Nuclear safety, Chernobyl disaster


We perform a statistical study of risk in nuclear energy systems. This study provides and analyzes a data set that is twice the size of the previous best data set on nuclear incidents and accidents, comparing three measures of severity: the industry standard International Nuclear Event Scale, the Nuclear Accident Magnitude Scale of radiation release, and cost in U.S. dollars. The rate of nuclear accidents with cost above 20 MM 2013 USD, per reactor per year, has decreased from the 1970s until the present time. Along the way, the rate dropped significantly after Chernobyl (April 1986) and is expected to be roughly stable around a level of 0.003, suggesting an average of just over one event per year across the current global fleet. The distribution of costs appears to have changed following the Three Mile Island major accident (March 1979). The median cost became approximately 3.5 times smaller, but an extremely heavy tail emerged, being well described by a Pareto distribution with parameter α = 0.5-0.6. For instance, the cost of the two largest events, Chernobyl and Fukushima (March 2011), is equal to nearly five times the sum of the 173 other events. We also document a significant runaway disaster regime in both radiation release and cost data, which we associate with the “dragon-king” phenomenon. Since the major accident at Fukushima (March 2011) occurred recently, we are unable to quantify an impact of the industry response to this disaster. Excluding such improvements, in terms of costs, our range of models suggests that there is presently a 50% chance that (i) a Fukushima event (or larger) occurs every 60-150 years, and (ii) that a Three Mile Island event (or larger) occurs every 10-20 years. Further-even assuming that it is no longer possible to suffer an event more costly than Chernobyl or Fukushima-the expected annual cost and its standard error bracket the cost of a new plant. This highlights the importance of improvements not only immediately following Fukushima, but also deeper improvements to effectively exclude the possibility of “dragon-king” disasters. Finally, we find that the International Nuclear Event Scale (INES) is inconsistent in terms of both cost and radiation released. To be consistent with cost data, the Chernobyl and Fukushima disasters would need to have between an INES level of 10 and 11, rather than the maximum of 7.

Concepts: Nuclear and radiation accidents, Nuclear Regulatory Commission, Radioactive contamination, Statistics, International Nuclear Event Scale, Three Mile Island accident, Nuclear safety, Chernobyl disaster


The Fukushima nuclear accident (March 11, 2011) caused the widespread contamination of Japan by direct deposition of airborne radionuclides. Analysis of weekly air filters revealed sporadic releases of radionuclides long after the Fukushima Daiichi reactors have been stabilized. One major discharge was observed in August 2013 in monitoring stations north of the Fukushima Daiichi nuclear power plant (FDNPP). During this event, an air monitoring station in this previously scarcely contaminated area suddenly reported (137)Cs activity levels that were 30-fold above the background. Together with atmospheric dispersion and deposition simulation, radionuclide analysis in soil indicated that debris removal operations conducted on the FDNPP site on August 19, 2013 are likely to be responsible for this late release of radionuclides. One soil sample in the center of the simulated plume exhibited a high (90)Sr contamination (78±8 Bq kg(-1)) as well as a high (90)Sr/(137)Cs ratio (0.04); both phenomena have usually been observed only in very close vicinity around the FDNPP. We estimate that through the resuspension of highly contaminated particles in the course of these earthmoving operations, a gross (137)Cs activity of ca. 2.8×10(11)Bq has been released.

Concepts: Nuclear power, Nuclear safety, Chernobyl disaster, Lists of nuclear disasters and radioactive incidents, Three Mile Island accident, Isotope, Release, Radioactive contamination


The 5th anniversary of the Fukushima disaster and the 30th anniversary of the Chernobyl disaster, the two most catastrophic nuclear accidents in history, both occurred recently. Images of Chernobyl are replete with the international sign of radioactive contamination (a circle with three broad spokes radiating outward in a yellow sign). In contrast, ongoing decontamination efforts at Fukushima lack international warnings about radioactivity. Decontamination workers at Fukushima appear to be poorly protected against radiation. It is almost as if the effort is to make the Fukushima problem disappear. A more useful response would be to openly acknowledge the monumental problems inherent in managing a nuclear plant disaster. Lessons from Chernobyl are the best predictors of what the Fukushima region of Japan is coping with in terms of health and environmental problems following a nuclear catastrophe.

Concepts: Nuclear power, Radiation, Radioactive decay, Lists of nuclear disasters and radioactive incidents, Three Mile Island accident, Nuclear safety, Radioactive contamination, Chernobyl disaster