Discover the most talked about and latest scientific content & concepts.

Concept: Threatened species


Listing endangered and threatened species under the US Endangered Species Act is presumed to offer a defense against extinction and a solution to achieve recovery of imperiled populations, but only if effective conservation action ensues after listing occurs. The amount of government funding available for species protection and recovery is one of the best predictors of successful recovery; however, government spending is both insufficient and highly disproportionate among groups of species, and there is significant discrepancy between proposed and actualized budgets across species. In light of an increasing list of imperiled species requiring evaluation and protection, an explicit approach to allocating recovery funds is urgently needed. Here I provide a formal decision-theoretic approach focusing on return on investment as an objective and a transparent mechanism to achieve the desired recovery goals. I found that less than 25% of the $1.21 billion/year needed for implementing recovery plans for 1,125 species is actually allocated to recovery. Spending in excess of the recommended recovery budget does not necessarily translate into better conservation outcomes. Rather, elimination of only the budget surplus for “costly yet futile” recovery plans can provide sufficient funding to erase funding deficits for more than 180 species. Triage by budget compression provides better funding for a larger sample of species, and a larger sample of adequately funded recovery plans should produce better outcomes even if by chance. Sharpening our focus on deliberate decision making offers the potential to achieve desired outcomes in avoiding extinction for Endangered Species Act-listed species.

Concepts: Biodiversity, Endangered species, Extinction, Endangered Species Act, Biodiversity Action Plan, IUCN Red List, Threatened species, Recovery Plan


For many threatened species the rate and drivers of population decline are difficult to assess accurately: species' surveys are typically restricted to small geographic areas, are conducted over short time periods, and employ a wide range of survey protocols. We addressed methodological challenges for assessing change in the abundance of an endangered species. We applied novel methods for integrating field and interview survey data for the critically endangered Bornean orangutan (Pongo pygmaeus), allowing a deeper understanding of the species' persistence through time. Our analysis revealed that Bornean orangutan populations have declined at a rate of 25% over the last 10 years. Survival rates of the species are lowest in areas with intermediate rainfall, where complex interrelations between soil fertility, agricultural productivity, and human settlement patterns influence persistence. These areas also have highest threats from human-wildlife conflict. Survival rates are further positively associated with forest extent, but are lower in areas where surrounding forest has been recently converted to industrial agriculture. Our study highlights the urgency of determining specific management interventions needed in different locations to counter the trend of decline and its associated drivers.

Concepts: Agriculture, Endangered species, Hominidae, Ape, Orangutan, Bornean Orangutan, IUCN Red List, Threatened species


Given current extinction trends, the number of species requiring conservation breeding programs (CBPs) is likely to increase dramatically. To inform CBP policies for threatened terrestrial vertebrates, we evaluated the number and representation of threatened vertebrate species on the IUCN Red List held in the ISIS zoo network and estimated the complexity of their management as metapopulations. Our results show that 695 of the 3,955 (23%) terrestrial vertebrate species in ISIS zoos are threatened. Only two of the 59 taxonomic orders show a higher proportion of threatened species in ISIS zoos than would be expected if species were selected at random. In addition, for most taxa, the management of a zoo metapopulation of more than 250 individuals will require the coordination of a cluster of 11 to 24 ISIS zoos within a radius of 2,000 km. Thus, in the zoo network, the representation of species that may require CBPs is currently low and the spatial distribution of these zoo populations makes management difficult. Although the zoo community may have the will and the logistical potential to contribute to conservation actions, including CBPs, to do so will require greater collaboration between zoos and other institutions, alongside the development of international agreements that facilitate cross-border movement of zoo animals. To maximize the effectiveness of integrated conservation actions that include CBPs, it is fundamental that the non-zoo conservation community acknowledges and integrates the expertise and facilities of zoos where it can be helpful.

Concepts: Endangered species, Vertebrate, Extinction, Conservation, IUCN Red List, Threatened species, Conservation Dependent, Least Concern


Captive breeding of threatened species, for release to the wild, is critical for conservation. This strategy, however, risks producing captive-raised animals with traits poorly suited to the wild. We describe the first study to characterise accumulated consequences of long-term captive breeding on behaviour, by following the release of Tasmanian devils to the wild. We test the impact of prolonged captive breeding on the probability that captive-raised animals are fatally struck by vehicles. Multiple generations of captive breeding increased the probability that individuals were fatally struck, a pattern that could not be explained by other confounding factors (e.g. age or release site). Our results imply that long-term captive breeding programs may produce animals that are naïve to the risks of the post-release environment. Our analyses have already induced changes in management policy of this endangered species, and serve as model of productive synergy between ecological monitoring and conservation strategy.

Concepts: Biodiversity, Species, Endangered species, Extinction, Conservation, Ex-situ conservation, Biodiversity Action Plan, Threatened species


Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US$160 million (range: US$116-204 million), plus 293 person-years of volunteer time (range: 278-308 person-years) valued at US$ 14 million (range US$12-16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US$6.5 million in total (range: US$6.2-6.7 million). We estimated that an additional US$114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US$12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for biodiversity conservation and sustainable development. Thus, the development and implementation of plans for sustainable long-term financing for them is critical.

Concepts: Biodiversity, Conservation biology, Ecology, Endangered species, Sustainability, Conservation, IUCN Red List, Threatened species


The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species' occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections.

Concepts: Species, Endangered species, Protection, Endangered Species Act, Biodiversity Action Plan, IUCN Red List, Threatened species, Rare species


Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages.

Concepts: Biology, Oceanography, Endangered species, Ocean, Marine biology, IUCN Red List, Threatened species, Conservation Dependent


Marine molluscs represent an estimated 23% of all extant marine taxa, but research into their conservation status has so far failed to reflect this importance, with minimal inclusion on the authoritative Red List of the International Union for the Conservation of Nature (IUCN). We assessed the status of all 632 valid species of the tropical marine gastropod mollusc, Conus (cone snails), using Red List standards and procedures to lay the groundwork for future decadal monitoring, one of the first fully comprehensive global assessments of a marine taxon. Three-quarters (75.6%) of species were not currently considered at risk of extinction owing to their wide distribution and perceived abundance. However, 6.5% were considered threatened with extinction with a further 4.1% near threatened. Data deficiency prevented 13.8% of species from being categorised although they also possess characteristics that signal concern. Where hotspots of endemism occur, most notably in the Eastern Atlantic, 42.9% of the 98 species from that biogeographical region were classified as threatened or near threatened with extinction. All 14 species included in the highest categories of Critically Endangered and Endangered are endemic to either Cape Verde or Senegal, with each of the three Critically Endangered species restricted to single islands in Cape Verde. Threats to all these species are driven by habitat loss and anthropogenic disturbance, in particular from urban pollution, tourism and coastal development. Our findings show that levels of extinction risk to which cone snails are exposed are of a similar magnitude to those seen in many fully assessed terrestrial taxa. The widely held view that marine species are less at risk is not upheld.

Concepts: Biodiversity, Endangered species, Extinction, Mollusca, Gastropoda, Biodiversity Action Plan, IUCN Red List, Threatened species


Stopping declines in biodiversity is critically important, but it is only a first step toward achieving more ambitious conservation goals. The absence of an objective and practical definition of species recovery that is applicable across taxonomic groups leads to inconsistent targets in recovery plans and frustrates reporting and maximization of conservation impact. We devised a framework for comprehensively assessing species recovery and conservation success. We propose a definition of a fully recovered species that emphasizes viability, ecological functionality, and representation; and use counterfactual approaches to quantify degree of recovery. This allowed us to calculate a set of 4 conservation metrics that demonstrate impacts of conservation efforts to date (conservation legacy); identify dependence of a species on conservation actions (conservation dependence); quantify expected gains resulting from conservation action in the medium term (conservation gain); and specify requirements to achieve maximum plausible recovery over the long term (recovery potential). These metrics can incentivize the establishment and achievement of ambitious conservation targets. We illustrate their use by applying the framework to a vertebrate, an invertebrate, and a woody and an herbaceous plant. Our approach is a preliminary framework for an International Union for Conservation of Nature (IUCN) Green List of Species, which was mandated by a resolution of IUCN members in 2012. Although there are several challenges in applying our proposed framework to a wide range of species, we believe its further development, implementation, and integration with the IUCN Red List of Threatened Species will help catalyze a positive and ambitious vision for conservation that will drive sustained conservation action. This article is protected by copyright. All rights reserved.

Concepts: Biodiversity, Species, Endangered species, Extinction, Conservation, IUCN Red List, Threatened species, Conservation Dependent


Where threatened biodiversity is adversely affected by development, policies often state that “no net loss” should be the goal and biodiversity offsetting is one mechanism available to achieve this. However, developments are often approved on an ad hoc basis and cumulative impacts are not sufficiently examined. We demonstrate the potential for serious threat to an endangered subspecies when multiple developments are planned. We modelled the distribution of the black-throated finch (Poephila cincta cincta) using bioclimatic data and Queensland’s Regional Ecosystem classification. We overlaid granted, extant extractive and exploratory mining tenures within the known and modelled ranges of black-throated finches to examine the level of incipient threat to this subspecies in central Queensland, Australia. Our models indicate that more than half of the remaining P. cincta cincta habitat is currently under extractive or exploratory tenure. Therefore, insufficient habitat exists to offset all potential development so “no net loss” is not possible. This has implications for future conservation of this and similarly distributed species and for resource development planning, especially the use of legislated offsets for biodiversity protection.

Concepts: Biodiversity, Species, Endangered species, Conservation, Biodiversity Action Plan, Estrildid finch, IUCN Red List, Threatened species