SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Thermophile

171

Microbial anaerobic digestion (AD) is used as a waste treatment process to degrade complex organic compounds into methane. The archaeal and bacterial taxa involved in AD are well known, whereas composition of the fungal community in the process has been less studied. The present study aimed to reveal the composition of archaeal, bacterial and fungal communities in response to increasing organic loading in mesophilic and thermophilic AD processes by applying 454 amplicon sequencing technology. Furthermore, a DNA microarray method was evaluated in order to develop a tool for monitoring the microbiological status of AD.

Concepts: DNA, Archaea, Bacteria, Microbiology, Anaerobic digestion, Methane, Methanogen, Thermophile

28

Anaerobic digestion of residual materials from animals and crops offers an opportunity to simultaneously produce bioenergy and plant fertilizers at single farms and in farm communities where input substrate materials and resulting digested residues are shared among member farms. A surplus benefit from this practice may be the suppressing of propagules from harmful biological pests like weeds and animal pathogens (e.g. parasites). In the present work, batch experiments were performed, where survival of seeds of seven species of weeds and non-embryonated eggs of the large roundworm of pigs, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C) was very clear as complete mortality, irrespective of weed species, was reached after less than 2 days. At mesophilic conditions, seeds of Avena fatua, Sinapsis arvensis, Solidago canadensis had completely lost germination ability, while Brassica napus, Fallopia convolvulus and Amzinckia micrantha still maintained low levels (∼1%) of germination ability after 1 week. Chenopodium album was the only weed species which survived 1 week at substantial levels (7%) although after 11d germination ability was totally lost. Similarly, at 55°C, no Ascaris eggs survived more than 3h of incubation. Incubation at 37°C did not affect egg survival during the first 48h and it took up to 10days before total elimination was reached. In general, anaerobic digestion in biogas plants seems an efficient way (thermophilic more efficient than mesophilic) to treat organic farm wastes in a way that suppresses animal parasites and weeds so that the digestates can be applied without risking spread of these pests.

Concepts: Archaea, Plant, Anaerobic digestion, Biogas, Sintex Digester, Manure, Thermophile, Mesophile

27

Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles.

Concepts: DNA, Archaea, Bacteria, Molecular biology, Organism, Biotechnology, Extremophile, Thermophile

26

Solid-state anaerobic digestion (SS-AD) and composting of yard trimmings with effluent from liquid AD were compared under thermophilic condition. Total solids (TS) contents of 22%, 25%, and 30% were studied for SS-AD, and 35%, 45%, and 55% for composting. Feedstock/effluent (F/E) ratios of 2, 3, 4, 5, and 6 were tested. In composting, the greatest carbon loss was obtained at 35% TS, which was 2-3 times of that at 55% TS and was up to 50% higher than that in SS-AD. In SS-AD, over half of the degraded carbon was converted to methane with the greatest methane yield of 121 L/kg VS(feedstock). Methane production from SS-AD was low at F/E ratios of 2 and 3, likely due to the inhibitory effect of high concentrations of ammonia nitrogen (up to 5.6g/kg). The N-P-K values were similar for SS-AD digestate and compost with different dominant nitrogen forms.

Concepts: Fertilizer, Anaerobic digestion, Biogas, Methane, Landfill, Mechanical biological treatment, Thermophile, Digestate

3

Manure treatment technologies are rapidly developing to minimize eutrophication of surrounding environments and potentially decrease the introduction of antibiotics and antibiotic resistant genes (ARGs) into the environment. While laboratory and pilot-scale manure treatment systems boast promising results, antibiotic and ARG removals in full-scale systems receiving continuous manure input have not been evaluated. The effect of treatment on ARGs is similarly lacking. This study examines the occurrence and transformation of sulfonamides, tetracyclines, tetracycline degradation products, and related ARGs throughout a full-scale advanced anaerobic digester (AAD) receiving continuous manure and antibiotic input. Manure samples were collected throughout the AAD system to evaluate baseline antibiotic and ARG input (raw manure), the effect of hygenization (post-pasteurized manure) and anaerobic digestion (post-digestion manure) on antibiotic and ARG levels. Antibiotics were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the ARGs tet(O), tet(W), sul1 and sul2 were analyzed by quantitative polymerase chain reaction (Q-PCR). Significant reductions in the concentrations of chlortetracycline, oxytetracycline, tetracycline and their degradation products were observed in manure liquids following treatment (p < 0.001), concomitant to significant increases in manure solids (p < 0.001). These results suggest sorption is the major removal route for tetracyclines during AAD. Significant decreases in the epimer-to-total residue ratios for chlortetracycline and tetracycline in manure solids further indicate degradation is desorption-limited. Moreover, sul1 and sul2 copies decreased significantly (p < 0.001) following AAD in the absence of sulfonamide antibiotics, while tetracyclines-resistant genes remained unchanged. A cross-sectional study of dairy farms utilizing natural aeration and liquid-solid separation treatments was additionally performed to compare levels of antibiotics and ARGs found in AAD with the levels in common manure management systems. The concentration of antibiotics in raw manure varied greatly between farms while minimal differences in ARGs were observed. However, significant (p < 0.01) differences in the levels of antibiotics and ARGs (except tet(W)) were observed in the effluents from the three different manure management systems.

Concepts: Bacteria, Polymerase chain reaction, Antibiotic resistance, Anaerobic digestion, Penicillin, Manure, Tetracycline antibiotics, Thermophile

1

Light-driven DNA repair by extremophilic photolyases is of tremendous importance for understanding the early development of life on Earth. The mechanism for flavin adenine dinucleotide (FADH-) repair of DNA lesions is the subject of debate and has been studied mainly in mesophilic species. In particular, the role of adenine in the repair process is poorly understood. Using molecular docking, molecular dynamics simulations, electronic structure calculations, and electron tunneling pathways analysis, we examined adenine’s role in DNA repair in four photolyases that thrive at different temperatures. Our results indicate that the contribution of adenine to the electronic coupling between the flavin and the cyclobutane pyrimidine dimer (CPD) lesion to be repaired is significant in three (one mesophilic and two extremophilic) of the four enzymes studied. Our analysis suggests that thermophilic and hyperthermophilic photolyases have evolved structurally to preserve the functional position (and thus the catalytic function) of adenine at their high temperatures of operation. Water molecules can compete with adenine in establishing the strongest coupling pathway for the electron transfer repair process, but the adenine contribution remains substantial. The present study also reconciles prior seemingly contradictory conclusions on the role of adenine in mesophile electron transfer repair reactions, showing how adenine-mediated superexchange is conformationally gated.

Concepts: DNA, Bacteria, Adenosine triphosphate, DNA repair, Adenine, FAD, Thermophile, Hyperthermophile

1

High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process “thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)”. Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H₂ and CO₂ to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.

Concepts: Archaea, Microbiology, Anaerobic digestion, Waste management, Methane, Methanogen, Thermophile, Methanogenesis

1

Anaerobic digestion (AnD) is a microbiological process that converts organic waste materials into biogas. Because of its high methane content, biogas is a combustible energy source and serves as an important environmental technology commonly used in the management of animal waste generated on large animal farms. Much work has been done on hardware design and process engineering for the generation of biogas. However, little is known about the complexity of the microbiology in this process. In particular, how microbes interact in the digester and eventually breakdown and convert organic matter into biogas is still regarded as a “black box.” We used 16S rRNA sequencing as a tool to study the microbial community in laboratory hog waste digesters under tightly controlled conditions, and systematically unraveled the distinct interaction networks of two microbial communities from mesophilic (MAnD) and thermophilic anaerobic digestion (TAnD). Under thermophilic conditions, the well-known association between hydrogen-producing bacteria, e.g., Ruminococcaceae and Prevotellaceae, and hydrotrophic methanogens, Methanomicrobiaceae, was reverse engineered by their interactive topological niches. The inferred interaction network provides a sketch enabling the determination of microbial interactive relationships that conventional strategy of finding differential taxa was hard to achieve. This research is still in its infancy, but it can help to depict the dynamics of microbial ecosystems and to lay the groundwork for understanding how microorganisms cohabit in the anaerobic digester.

Concepts: Archaea, Bacteria, Microbiology, Anaerobic digestion, Waste management, Biogas, Methane, Thermophile

1

Separating acidification and methanogenic steps in anaerobic digestion processes can help to optimize the process and contribute to producing valuable sub-products such as methane, hydrogen and organic acids. However, the full potential of this technology has not been fully explored yet. To assess the underlying fermentation process in more detail, a combination of high-throughput sequencing and proteomics on the acidification step of plant material (grass) at both mesophilic and thermophilic temperatures (37 and 55 °C, respectively) was applied for the first time.

Concepts: Oxygen, Hydrogen, Carbon, Anaerobic digestion, Methane, Thermophile, Methanogenesis, Mesophile

1

One of the most promising technologies to sustainably produce energy and to mitigate greenhouse gas emissions from combustion of fossil energy carriers is the anaerobic digestion and biomethanation of organic raw material and waste towards biogas by highly diverse microbial consortia. In this context, the microbial systems ecology of thermophilic industrial-scale biogas plants is poorly understood.

Concepts: Archaea, Anaerobic digestion, Waste management, Biogas, Methane, Greenhouse gas, Methanogen, Thermophile