SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Thermodynamics

271

Although published material exists about the skills required for a successful bioinformatics career, strangely enough no work to date has addressed the matter of how to excel at not being a bioinformatician. A set of basic guidelines and a code of conduct is hereby presented to re-address that imbalance for fellow-practitioners whose aim is to not to succeed in their chosen bioinformatics field. By scrupulously following these guidelines one can be sure to regress at a highly satisfactory rate.

Concepts: DNA, Bioinformatics, Chemistry, Thermodynamics, CP/M

232

Although studies have provided estimates of premature deaths attributable to either heat or cold in selected countries, none has so far offered a systematic assessment across the whole temperature range in populations exposed to different climates. We aimed to quantify the total mortality burden attributable to non-optimum ambient temperature, and the relative contributions from heat and cold and from moderate and extreme temperatures.

Concepts: Demography, Climate, Temperature, Thermodynamics, Heat, Entropy, Cold, Thermal radiation

217

It is widely considered that most organisms cannot survive prolonged exposure to temperatures below 0°C, primarily because of the damage caused by the water in cells as it freezes. However, some organisms are capable of surviving extreme variations in environmental conditions. In the case of temperature, the ability to survive subzero temperatures is referred to as cryobiosis. We show that the ozobranchid leech, Ozobranchus jantseanus, a parasite of freshwater turtles, has a surprisingly high tolerance to freezing and thawing. This finding is particularly interesting because the leach can survive these temperatures without any acclimation period or pretreatment. Specifically, the leech survived exposure to super-low temperatures by storage in liquid nitrogen (-196°C) for 24 hours, as well as long-term storage at temperatures as low as -90°C for up to 32 months. The leech was also capable of enduring repeated freeze-thaw cycles in the temperature range 20°C to -100°C and then back to 20°C. The results demonstrated that the novel cryotolerance mechanisms employed by O. jantseanus enable the leech to withstand a wider range of temperatures than those reported previously for cryobiotic organisms. We anticipate that the mechanism for the observed tolerance to freezing and thawing in O. jantseanus will prove useful for future studies of cryopreservation.

Concepts: Temperature, Thermodynamics, Solid, Liquid, Melting point, Freezing, Cryobiology, Cryopreservation

203

We present a systematic and quantitative model of huddling penguins. In this mathematical model, each individual penguin in the huddle seeks only to reduce its own heat loss. Consequently, penguins on the boundary of the huddle that are most exposed to the wind move downwind to more sheltered locations along the boundary. In contrast, penguins in the interior of the huddle neither have the space to move nor experience a significant heat loss, and they therefore remain stationary. Through these individual movements, the entire huddle experiences a robust cumulative effect that we identify, describe, and quantify. This mathematical model requires a calculation of the wind flowing around the huddle and of the resulting temperature distribution. Both of these must be recomputed each time an individual penguin moves since the huddle shape changes. Using our simulation results, we find that the key parameters affecting the huddle dynamics are the number of penguins in the huddle, the wind strength, and the amount of uncertainty in the movement of the penguins. Moreover, we find that the lone assumption of individual penguins minimizing their own heat loss results in all penguins having approximately equal access to the warmth of the huddle.

Concepts: Mathematics, Physics, Temperature, Thermodynamics, Heat, Heat transfer, Penguin, Wind

192

2014 was nominally the warmest year on record for both the globe and northern hemisphere based on historical records spanning the past one and a half centuries(1,2). It was the latest in a recent run of record temperatures spanning the past decade and a half. Press accounts reported odds as low as one-in-650 million that the observed run of global temperature records would be expected to occur in the absence of human-caused global warming. Press reports notwithstanding, the question of how likely observed temperature records may have have been both with and without human influence is interesting in its own right. Here we attempt to address that question using a semi-empirical approach that combines the latest (CMIP5(3)) climate model simulations with observations of global and hemispheric mean temperature. We find that individual record years and the observed runs of record-setting temperatures were extremely unlikely to have occurred in the absence of human-caused climate change, though not nearly as unlikely as press reports have suggested. These same record temperatures were, by contrast, quite likely to have occurred in the presence of anthropogenic climate forcing.

Concepts: Climate, Temperature, Thermodynamics, Heat, Climate change, Solar variation, Global warming, Northern Hemisphere

182

Current physical activity recommendations assume that different activities can be exchanged to produce the same weight-control benefits so long as total energy expended remains the same (exchangeability premise). To this end, they recommend calculating energy expenditure as the product of the time spent performing each activity and the activity’s metabolic equivalents (MET), which may be summed to achieve target levels. The validity of the exchangeability premise was assessed using data from the National Runners' Health Study.

Concepts: Metabolism, Energy, Obesity, Muscle, Thermodynamics, Weight loss, Basal metabolic rate, Energeia

181

To explore whether work schedules and physically demanding work were associated with markers of ovarian reserve and response.

Concepts: Energy, Thermodynamics, Force, Gynecology

180

BACKGROUND: Numerous policies have been proposed to address the public health problem of obesity, resulting in a policy cacophony. The noise of so many policy options renders it difficult for policymakers to determine which policies warrant implementation. This has resulted in calls for more and better evidence to support obesity policy. However, it is not clear that evidence is the solution. This paper argues that to address the policy cacophony it is necessary to rethink the problem of obesity, and more specifically, how the problem of obesity is framed. This paper argues that the frame “obesity” be replaced by the frame “caloric overconsumption”, concluding that the frame caloric overconsumption can overcome the obesity policy cacophony. DISCUSSION: Frames are important because they influence public policy. Understood as packages that define issues, frames influence how best to approach a problem. Consequently, debates over public policy are considered battles over framing, with small shifts in how an issue is framed resulting in significant changes to the policy environment. This paper presents a rationale for reframing the problem of obesity as caloric overconsumption. The frame “obesity” contributes to the policy cacophony by including policies aimed at both energy output and energy input. However, research increasingly demonstrates that energy input is the primary cause of obesity, and that increases in energy input are largely attributable to the food environment. By focusing on policies that aim to prevent increases in energy input, the frame caloric overconsumption will reduce the noise of the obesity policy cacophony. While the proposed frame will face some challenges, particularly industry opposition, policies aimed at preventing caloric overconsumption have a clearer focus, and can be more politically palatable if caloric overconsumption is seen as an involuntary risk resulting from the food environment.

Concepts: Thermodynamics, Policy, Implementation, Government, Political science, Frame, Public policy, Policy analysis

173

Global air temperature has become the primary metric for judging global climate change. The variability of global temperature on a decadal timescale is still poorly understood. This paper examines further one suggested hypothesis, that variations in solar radiation reaching the surface (Rs) have caused much of the observed decadal temperature variability. Because Rs only heats air during the day, its variability is plausibly related to the variability of diurnal temperature range (daily maximum temperature minus its minimum). We show that the variability of diurnal temperature range is consistent with the variability of Rs at timescales from monthly to decadal. This paper uses long comprehensive datasets for diurnal temperature range to establish what has been the contribution of Rs to decadal temperature variability. It shows that Rs over land globally peaked in the 1930s, substantially decreased from the 1940s to the 1970s, and changed little after that. Reduction of Rs caused a reduction of more than 0.2 °C in mean temperature during May to October from the 1940s through the 1970s, and a reduction of nearly 0.2 °C in mean air temperature during November to April from the 1960s through the 1970s. This cooling accounts in part for the near-constant temperature from the 1930s into the 1970s. Since then, neither the rapid increase in temperature from the 1970s through the 1990s nor the slowdown of warming in the early twenty-first century appear to be significantly related to changes of Rs.

Concepts: Climate, Weather, Temperature, Thermodynamics, Climate change, Meteorology, Solar variation, Global warming

171

In theoretical ecology it is well known that the steady state expressions of the variables in a food chain crucially depend on the parity of the length of the chain. This poses a major problem for modeling real food webs because it is difficult to establish their true number of trophic levels, with sometimes rare predators and often rampant pathogens. Similar problems arise in the modeling of chronic viral infections. We review examples where seemingly general interpretations strongly depend on the number of levels in a model, and on its specific equations. This Perspective aims to open the discussion on this problem.

Concepts: Immune system, Mathematics, Ecology, Thermodynamics, Trophic level, Food chain, Apex predator, Charles Sutherland Elton