Discover the most talked about and latest scientific content & concepts.

Concept: The Evolution of Cooperation


Never before have individuals had to adapt to social environments defined by such magnitudes of ethnic diversity and cultural differentiation. However, neurobiological evidence informing about strategies to reduce xenophobic sentiment and foster altruistic cooperation with outsiders is scarce. In a series of experiments settled in the context of the current refugee crisis, we tested the propensity of 183 Caucasian participants to make donations to people in need, half of whom were refugees (outgroup) and half of whom were natives (ingroup). Participants scoring low on xenophobic attitudes exhibited an altruistic preference for the outgroup, which further increased after nasal delivery of the neuropeptide oxytocin. In contrast, participants with higher levels of xenophobia generally failed to exhibit enhanced altruism toward the outgroup. This tendency was only countered by pairing oxytocin with peer-derived altruistic norms, resulting in a 74% increase in refugee-directed donations. Collectively, these findings reveal the underlying sociobiological conditions associated with outgroup-directed altruism by showing that charitable social cues co-occurring with enhanced activity of the oxytocin system reduce the effects of xenophobia by facilitating prosocial behavior toward refugees.

Concepts: Mutual Aid: A Factor of Evolution, Ethology, Canada, The Evolution of Cooperation, Sociology, Culture


In-group favoritism is a central aspect of human behavior. People often help members of their own group more than members of other groups. Here we propose a mathematical framework for the evolution of in-group favoritism from a continuum of strategies. Unlike previous models, we do not pre-suppose that players never cooperate with out-group members. Instead, we determine the conditions under which preferential in-group cooperation emerges, and also explore situations where preferential out-group helping could evolve. Our approach is not based on explicit intergroup conflict, but instead uses evolutionary set theory. People can move between sets. Successful sets attract members, and successful strategies gain imitators. Individuals can employ different strategies when interacting with in-group versus out-group members. Our framework also allows us to implement different games for these two types of interactions. We prove general results and derive specific conditions for the evolution of cooperation based on in-group favoritism.

Concepts: Behavior, Human behavior, Mathematics, Evolution, Motivation, Emergence, Evolutionary psychology, The Evolution of Cooperation


Recent work has revealed a new class of “zero-determinant” (ZD) strategies for iterated, two-player games. ZD strategies allow a player to unilaterally enforce a linear relationship between her score and her opponent’s score, and thus to achieve an unusual degree of control over both players' long-term payoffs. Although originally conceived in the context of classical two-player game theory, ZD strategies also have consequences in evolving populations of players. Here, we explore the evolutionary prospects for ZD strategies in the Iterated Prisoner’s Dilemma (IPD). Several recent studies have focused on the evolution of “extortion strategies,” a subset of ZD strategies, and have found them to be unsuccessful in populations. Nevertheless, we identify a different subset of ZD strategies, called “generous ZD strategies,” that forgive defecting opponents but nonetheless dominate in evolving populations. For all but the smallest population sizes, generous ZD strategies are not only robust to being replaced by other strategies but can selectively replace any noncooperative ZD strategy. Generous strategies can be generalized beyond the space of ZD strategies, and they remain robust to invasion. When evolution occurs on the full set of all IPD strategies, selection disproportionately favors these generous strategies. In some regimes, generous strategies outperform even the most successful of the well-known IPD strategies, including win-stay-lose-shift.

Concepts: Kin selection, Biology, Nash equilibrium, Natural selection, Evolution, The Evolution of Cooperation, Prisoner's dilemma, Game theory


The strong reciprocity model of the evolution of human cooperation has gained some acceptance, partly on the basis of support from experimental findings. The observation that unfair offers in the ultimatum game are frequently rejected constitutes an important piece of the experimental evidence for strong reciprocity. In the present study, we have challenged the idea that the rejection response in the ultimatum game provides evidence of the assumption held by strong reciprocity theorists that negative reciprocity observed in the ultimatum game is inseparably related to positive reciprocity as the two sides of a preference for fairness. The prediction of an inseparable relationship between positive and negative reciprocity was rejected on the basis of the results of a series of experiments that we conducted using the ultimatum game, the dictator game, the trust game, and the prisoner’s dilemma game. We did not find any correlation between the participants' tendencies to reject unfair offers in the ultimatum game and their tendencies to exhibit various prosocial behaviors in the other games, including their inclinations to positively reciprocate in the trust game. The participants' responses to postexperimental questions add support to the view that the rejection of unfair offers in the ultimatum game is a tacit strategy for avoiding the imposition of an inferior status.

Concepts: The Evolution of Cooperation, Reciprocity, Hypothesis, Experimental economics, Ultimatum game, Dictator game, Prisoner's dilemma, Game theory


The exclusion of freeriders from common privileges or public acceptance is widely found in the real world. Current models on the evolution of cooperation with incentives mostly assume peer sanctioning, whereby a punisher imposes penalties on freeriders at a cost to itself. It is well known that such costly punishment has two substantial difficulties. First, a rare punishing cooperator barely subverts the asocial society of freeriders, and second, natural selection often eliminates punishing cooperators in the presence of non-punishing cooperators (namely, ‘second-order’ freeriders). We present a game-theoretical model of social exclusion in which a punishing cooperator can exclude freeriders from benefit sharing. We show that such social exclusion can overcome the above-mentioned difficulties even if it is costly and stochastic. The results do not require a genetic relationship, repeated interaction, reputation or group selection. Instead, only a limited number of freeriders are required to prevent the second-order freeriders from eroding the social immune system.

Concepts: Mutation, Population genetics, Immune system, Sociology, Artificial selection, The Evolution of Cooperation, Natural selection, Evolution


We study evolutionary game dynamics on structured populations in which individuals take part in several layers of networks of interactions simultaneously. This multiplex of interdependent networks accounts for the different kind of social ties each individual has. By coupling the evolutionary dynamics of a Prisoner’s Dilemma game in each of the networks, we show that the resilience of cooperative behaviors for extremely large values of the temptation to defect is enhanced by the multiplex structure. Furthermore, this resilience is intrinsically related to a non-trivial organization of cooperation across the network layers, thus providing a new way out for cooperation to survive in structured populations.

Concepts: Structure, Nash equilibrium, Evolutionary game theory, Evolutionarily stable strategy, Game theory, The Evolution of Cooperation, Sociology, Prisoner's dilemma


Cooperation is a fundamental human trait but our understanding of how it functions remains incomplete. Indirect reciprocity is a particular case in point, where one-shot donations are made to unrelated beneficiaries without any guarantee of payback. Existing insights are largely from two independent perspectives: i) individual-level cognitive behaviour in decision making, and ii) identification of conditions that favour evolution of cooperation. We identify a fundamental connection between these two areas by examining social comparison as a means through which indirect reciprocity can evolve. Social comparison is well established as an inherent human disposition through which humans navigate the social world by self-referential evaluation of others. Donating to those that are at least as reputable as oneself emerges as a dominant heuristic, which represents aspirational homophily. This heuristic is found to be implicitly present in the current knowledge of conditions that favour indirect reciprocity. The effective social norms for updating reputation are also observed to support this heuristic. We hypothesise that the cognitive challenge associated with social comparison has contributed to cerebral expansion and the disproportionate human brain size, consistent with the social complexity hypothesis. The findings have relevance for the evolution of autonomous systems that are characterised by one-shot interactions.

Concepts: Hypothesis, Decision making, Human brain, The Evolution of Cooperation, Psychology, Cognition, Brain, Sociology


Humans often cooperate with strangers, despite the costs involved. A long tradition of theoretical modeling has sought ultimate evolutionary explanations for this seemingly altruistic behavior. More recently, an entirely separate body of experimental work has begun to investigate cooperation’s proximate cognitive underpinnings using a dual-process framework: Is deliberative self-control necessary to reign in selfish impulses, or does self-interested deliberation restrain an intuitive desire to cooperate? Integrating these ultimate and proximate approaches, we introduce dual-process cognition into a formal game-theoretic model of the evolution of cooperation. Agents play prisoner’s dilemma games, some of which are one-shot and others of which involve reciprocity. They can either respond by using a generalized intuition, which is not sensitive to whether the game is one-shot or reciprocal, or pay a (stochastically varying) cost to deliberate and tailor their strategy to the type of game they are facing. We find that, depending on the level of reciprocity and assortment, selection favors one of two strategies: intuitive defectors who never deliberate, or dual-process agents who intuitively cooperate but sometimes use deliberation to defect in one-shot games. Critically, selection never favors agents who use deliberation to override selfish impulses: Deliberation only serves to undermine cooperation with strangers. Thus, by introducing a formal theoretical framework for exploring cooperation through a dual-process lens, we provide a clear answer regarding the role of deliberation in cooperation based on evolutionary modeling, help to organize a growing body of sometimes-conflicting empirical results, and shed light on the nature of human cognition and social decision making.

Concepts: Decision making, Evolutionary biology, Kin selection, Reciprocal altruism, Altruism, Game theory, Cognition, The Evolution of Cooperation


The two-player Iterated Prisoner’s Dilemma game is a model for both sentient and evolutionary behaviors, especially including the emergence of cooperation. It is generally assumed that there exists no simple ultimatum strategy whereby one player can enforce a unilateral claim to an unfair share of rewards. Here, we show that such strategies unexpectedly do exist. In particular, a player X who is witting of these strategies can (i) deterministically set her opponent Y’s score, independently of his strategy or response, or (ii) enforce an extortionate linear relation between her and his scores. Against such a player, an evolutionary player’s best response is to accede to the extortion. Only a player with a theory of mind about his opponent can do better, in which case Iterated Prisoner’s Dilemma is an Ultimatum Game.

Concepts: The Evolution of Cooperation, Mind, Stag hunt, Evolutionarily stable strategy, Metaphysics, Nash equilibrium, Prisoner's dilemma, Game theory


The evolution of cooperation remains a central issue in socio-biology with the fundamental problem of how individuals minimize the risks of being short-changed (‘cheated’) should their behavioural investment in another not be returned. Economic decisions that individuals make during interactions may depend upon the presence of potential partners nearby, which offers co operators a temptation to defect from the current partner. The parcelling model posits that donors subdivide services into parcels to force cooperation, and that this is contingent on opportunities for defection; that is, the presence of bystanders. Here we test this model and the effect of bystander presence using grooming interactions of wild chimpanzees. We found that with more bystanders, initiators gave less grooming at the beginning of the bout and were more likely to abandon a grooming bout, while bouts were less likely to be reciprocated. We also found that the groomer’s initial investment was not higher among frequent groomers or stronger reciprocators, suggesting that contrary to current assumptions, grooming decisions are not based on trust, or bonds, within dyads. Our work highlights the importance of considering immediate social context and the influence of bystanders for understanding the evolution of the behavioural strategies that produce cooperation.

Concepts: Child grooming, Bystander effect, The Current, Defection, Sociology, The Evolution of Cooperation