Discover the most talked about and latest scientific content & concepts.

Concept: Tensile strength


The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

Concepts: Shock wave, Amorphous solids, Materials science, Amorphous metal, Metal, Tensile strength, Solid, Glass


The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

Concepts: Redox, Nitrogen, Graphene, Carbon nanotube, Carbon dioxide, Tensile strength, Spider silk, Carbon


Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (~800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at ~450-650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding ~90 GPa to become metallic.

Concepts: Chemical element, Tensile strength, X-ray, Pressure, Carbon, Carbon nanotube, X-ray crystallography, Electron


PURPOSE: To compare the biomechanical and technical properties of flexor tendon repairs using a 4-strand cruciate FiberWire (FW) repair and a 2-strand multifilament stainless steel (MFSS) single cross-lock cable-crimp system. METHODS: Eight tests were conducted for each type of repair using cadaver hand flexor digitorum profundus tendons. We measured the required surgical exposure, repair time, and force of flexion (friction) with a custom motor system with an inline load cell and measured ultimate tensile strength (UTS) and 2-mm gap force on a servo-hydraulic testing machine. RESULTS: Repair time averaged less than 7 minutes for the 2-strand MFSS cable crimp repairs and 12 minutes for the FW repairs. The FW repair was performed with 2 cm of exposure and removal of the C-1 and A-3 pulleys. The C-1 and A-3 pulleys were retained in each of the MFSS cable crimp repairs with less than 1 cm of exposure. Following the FW repair, the average increase in friction was 89% compared with an average of 53% for the MFSS repairs. Six of the 8 MFSS specimens achieved the UTS before any gap had occurred, whereas all of the FW repairs had more than 2 mm of gap before the UTS, indicating that the MFSS was a stiffer repair. The average UTS appeared similar for both groups. CONCLUSIONS: We describe a 2-strand multifilament stainless steel single cross-lock cable crimp flexor repair system. In our studies of this cable crimp system, we found that surgical exposure, average repair times, and friction were reduced compared to the traditional 4-strand cruciate FW repair. While demonstrating these benefits, the crimp repair also produced a stiff construct and high UTS and 2-mm gap force. CLINICAL RELEVANCE: A cable crimp flexor tendon repair may offer an attractive alternative to current repair methods. The benefits may be important especially for flexor tendon repair in zone 2 or for the repair of multiple tendons.

Concepts: Stainless steel, Strength of materials, Knee, Force, Titanium, Flexor digitorum profundus muscle, Tensile strength, Steel


Sporosarcina pasteurii, a common soil bacterium has been tested for microbial treatment of cement mortar. The present study also seeks to investigate the effects of growth medium, bacterial concentration and different buffers concerning the preparation of bacterial suspensions on the compressive strength of cement mortar. Two growth media, six different suspensions and two bacterial concentrations were used in the study. The influence of growth medium on calcification efficiency of S. pasteurii was insignificant. Significant improvement in the compressive as well as the tensile strength of cement mortar was observed. Microbial mineral precipitation visualized by Scanning Electron Microscopy (SEM) shows fibrous material that increased the strength of cement mortar. Formation of thin strands of fillers observed through SEM micrographs improves the pore structure, impermeability and thus the compressive as well as the tensile strengths of the cement mortar. The type of substrate and its molarity have a significant influence on the strength of cement mortar.

Concepts: Yeast, Growth medium, Materials science, Microbiology, Concrete, Tensile strength, Scanning electron microscope, Bacteria


Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy’s impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.

Concepts: Tensile strength, Transmission electron microscopy, Electron microscope, Effect, Electron, Effectiveness, Charpy impact test, Scanning electron microscope


The new three-dimensional structure that the graphene connected with SWCNTs (G-CNTs, Graphene Single-Walled Carbon Nanotubes) can solve graphene and CNTs' problems. A comprehensive study of the mechanical and electrical performance of the junctions was performed by first-principles theory. There were eight types of junctions that were constituted by armchair and zigzag graphene and (3,3), (4,0), (4,4), and (6,0) CNTs. First, the junction strength was investigated. Generally, the binding energy of armchair G-CNTs was stronger than that of zigzag G-CNTs, and it was the biggest in the armchair G-CNTs (6,0). Likewise, the electrical performance of armchair G-CNTs was better than that of zigzag G-CNTs. Charge density distribution of G-CNTs (6,0) was the most homogeneous. Next, the impact factors of the electronic properties of armchair G-CNTs were investigated. We suggest that the band gap is increased with the length of CNTs, and its value should be dependent on the combined effect of both the graphene’s width and the CNTs' length. Last, the relationship between voltage and current (U/I) were studied. The U/I curve of armchair G-CNTs (6,0) possessed a good linearity and symmetry. These discoveries will contribute to the design and production of G-CNT-based devices.

Concepts: Charge density, Allotropes of carbon, Tensile strength, Graphene, Electric charge, Graphite, Carbon, Carbon nanotube


The elastoplastic deformation behaviors of hollow glass microspheres/iron syntactic foam under tension were modeled using a representative volume element (RVE) approach. The three-dimensional microstructures of the iron syntactic foam with 5 wt % glass microspheres were reconstructed using the random sequential adsorption algorithm. The constitutive behavior of the elastoplasticity in the iron matrix and the elastic-brittle failure for the glass microsphere were simulated in the models. An appropriate RVE size was statistically determined by evaluating elastic modulus, Poisson’s ratio, and yield strength in terms of model sizes and boundary conditions. The model was validated by the agreement with experimental findings. The tensile deformation mechanism of the syntactic foam considering the fracture of the microspheres was then investigated. In addition, the feasibility of introducing the interfacial deboning behavior to the proposed model was briefly investigated to improve the accuracy in depicting fracture behaviors of the syntactic foam. It is thought that the modeling techniques and the model itself have major potential for applications not only in the study of hollow glass microspheres/iron syntactic foams, but also for the design of composites with a high modulus matrix and high strength reinforcement.

Concepts: Hooke's law, Deformation, Syntactic foam, Young's modulus, Elasticity, Solid mechanics, Glass microsphere, Tensile strength


We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

Concepts: Materials science, Strength of materials, Elasticity, Linear elasticity, Elastic modulus, Skin, Tensile strength


Osteoporosis is characterised by trabecular bone loss resulting from increased osteoclast activation and unbalanced coupling between resorption and formation, which induces a thinning of trabeculae and trabecular perforations. Bisphosphonates are the frontline therapy for osteoporosis, which act by reducing bone remodelling, and are thought to prevent perforations and maintain microstructure. However, bisphosphonates may oversuppress remodelling resulting in accumulation of microcracks. This paper aims to investigate the effect of bisphosphonate treatment on microstructure and mechanical strength. Assessment of microdamage within the trabecular bone core was performed using synchrotron X-ray micro-CT linked to image analysis software. Bone from bisphosphonate-treated fracture patients exhibited fewer perforations but more numerous and larger microcracks than both fracture and non-fracture controls. Furthermore, bisphosphonate-treated bone demonstrated reduced tensile strength and Young’s Modulus. These findings suggest that bisphosphonate therapy is effective at reducing perforations but may also cause microcrack accumulation, leading to a loss of microstructural integrity and consequently, reduced mechanical strength.

Concepts: Multiple myeloma, Materials science, Osteoclast, Solid mechanics, Tensile strength, Bone, Bisphosphonate, Osteoporosis