Discover the most talked about and latest scientific content & concepts.

Concept: Temperature


Recent climate change on the Antarctic Peninsula is well documented [1-5], with warming, alongside increases in precipitation, wind strength, and melt season length [1, 6, 7], driving environmental change [8, 9]. However, meteorological records mostly began in the 1950s, and paleoenvironmental datasets that provide a longer-term context to recent climate change are limited in number and often from single sites [7] and/or discontinuous in time [10, 11]. Here we use moss bank cores from a 600-km transect from Green Island (65.3°S) to Elephant Island (61.1°S) as paleoclimate archives sensitive to regional temperature change, moderated by water availability and surface microclimate [12, 13]. Mosses grow slowly, but cold temperatures minimize decomposition, facilitating multi-proxy analysis of preserved peat [14]. Carbon isotope discrimination (Δ(13)C) in cellulose indicates the favorability of conditions for photosynthesis [15]. Testate amoebae are representative heterotrophs in peatlands [16-18], so their populations are an indicator of microbial productivity [14]. Moss growth and mass accumulation rates represent the balance between growth and decomposition [19]. Analyzing these proxies in five cores at three sites over 150 years reveals increased biological activity over the past ca. 50 years, in response to climate change. We identified significant changepoints in all sites and proxies, suggesting fundamental and widespread changes in the terrestrial biosphere. The regional sensitivity of moss growth to past temperature rises suggests that terrestrial ecosystems will alter rapidly under future warming, leading to major changes in the biology and landscape of this iconic region-an Antarctic greening to parallel well-established observations in the Arctic [20].

Concepts: Plant, Climate, Weather, Temperature, Antarctica, Cold, Peat, Moss


Stories of g-tummo meditators mysteriously able to dry wet sheets wrapped around their naked bodies during a frigid Himalayan ceremony have intrigued scholars and laypersons alike for a century. Study 1 was conducted in remote monasteries of eastern Tibet with expert meditators performing g-tummo practices while their axillary temperature and electroencephalographic (EEG) activity were measured. Study 2 was conducted with Western participants (a non-meditator control group) instructed to use the somatic component of the g-tummo practice (vase breathing) without utilization of meditative visualization. Reliable increases in axillary temperature from normal to slight or moderate fever zone (up to 38.3°C) were observed among meditators only during the Forceful Breath type of g-tummo meditation accompanied by increases in alpha, beta, and gamma power. The magnitude of the temperature increases significantly correlated with the increases in alpha power during Forceful Breath meditation. The findings indicate that there are two factors affecting temperature increase. The first is the somatic component which causes thermogenesis, while the second is the neurocognitive component (meditative visualization) that aids in sustaining temperature increases for longer periods. Without meditative visualization, both meditators and non-meditators were capable of using the Forceful Breath vase breathing only for a limited time, resulting in limited temperature increases in the range of normal body temperature. Overall, the results suggest that specific aspects of the g-tummo technique might help non-meditators learn how to regulate their body temperature, which has implications for improving health and regulating cognitive performance.

Concepts: Temperature, Electroencephalography, Human body, Meditation, Spirituality, Binaural beats, Anapanasati


Although studies have provided estimates of premature deaths attributable to either heat or cold in selected countries, none has so far offered a systematic assessment across the whole temperature range in populations exposed to different climates. We aimed to quantify the total mortality burden attributable to non-optimum ambient temperature, and the relative contributions from heat and cold and from moderate and extreme temperatures.

Concepts: Demography, Climate, Temperature, Thermodynamics, Heat, Entropy, Cold, Thermal radiation


It is widely considered that most organisms cannot survive prolonged exposure to temperatures below 0°C, primarily because of the damage caused by the water in cells as it freezes. However, some organisms are capable of surviving extreme variations in environmental conditions. In the case of temperature, the ability to survive subzero temperatures is referred to as cryobiosis. We show that the ozobranchid leech, Ozobranchus jantseanus, a parasite of freshwater turtles, has a surprisingly high tolerance to freezing and thawing. This finding is particularly interesting because the leach can survive these temperatures without any acclimation period or pretreatment. Specifically, the leech survived exposure to super-low temperatures by storage in liquid nitrogen (-196°C) for 24 hours, as well as long-term storage at temperatures as low as -90°C for up to 32 months. The leech was also capable of enduring repeated freeze-thaw cycles in the temperature range 20°C to -100°C and then back to 20°C. The results demonstrated that the novel cryotolerance mechanisms employed by O. jantseanus enable the leech to withstand a wider range of temperatures than those reported previously for cryobiotic organisms. We anticipate that the mechanism for the observed tolerance to freezing and thawing in O. jantseanus will prove useful for future studies of cryopreservation.

Concepts: Temperature, Thermodynamics, Solid, Liquid, Melting point, Freezing, Cryobiology, Cryopreservation


It has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology.

Concepts: Energy, Physiology, Climate, Temperature, Heat transfer, Cryobiology, Hibernation, Fat-tailed Dwarf Lemur


The idea that low surface densities of hairs could be a heat loss mechanism is understood in engineering and has been postulated in some thermal studies of animals. However, its biological implications, both for thermoregulation as well as for the evolution of epidermal structures, have not yet been noted. Since early epidermal structures are poorly preserved in the fossil record, we study modern elephants to infer not only the heat transfer effect of present-day sparse hair, but also its potential evolutionary origins. Here we use a combination of theoretical and empirical approaches, and a range of hair densities determined from photographs, to test whether sparse hairs increase convective heat loss from elephant skin, thus serving an intentional evolutionary purpose. Our conclusion is that elephants are covered with hair that significantly enhances their thermoregulation ability by over 5% under all scenarios considered, and by up to 23% at low wind speeds where their thermoregulation needs are greatest. The broader biological significance of this finding suggests that maintaining a low-density hair cover can be evolutionary purposeful and beneficial, which is consistent with the fact that elephants have the greatest need for heat loss of any modern terrestrial animal because of their high body-volume to skin-surface ratio. Elephant hair is the first documented example in nature where increasing heat transfer due to a low hair density covering may be a desirable effect, and therefore raises the possibility of such a covering for similarly sized animals in the past. This elephant example dispels the widely-held assumption that in modern endotherms body hair functions exclusively as an insulator and could therefore be a first step to resolving the prior paradox of why hair was able to evolve in a world much warmer than our own.

Concepts: Evolution, Temperature, Heat, Convection, Heat transfer, Hair, Elephant, Paleontology


Mitochondria generate most of the heat in endotherms. Given some impedance of heat transfer across protein-rich bioenergetic membranes, mitochondria must operate at a higher temperature than body temperature in mammals and birds. But exactly how much hotter has been controversial, with physical calculations suggesting that maximal heat gradients across cells could not be greater than 10-5 K. Using the thermosensitive mitochondrial-targeted fluorescent dye Mito Thermo Yellow (MTY), Chrétien and colleagues suggest that mitochondria are optimised to nearly 50 °C, 10 °C hotter than body temperature. This extreme value questions what temperature really means in confined far-from-equilibrium systems but encourages a reconsideration of thermal biology.

Concepts: Energy, Thermoregulation, Temperature, Thermodynamics, Heat, Entropy, Internal energy, Heat transfer


We present a systematic and quantitative model of huddling penguins. In this mathematical model, each individual penguin in the huddle seeks only to reduce its own heat loss. Consequently, penguins on the boundary of the huddle that are most exposed to the wind move downwind to more sheltered locations along the boundary. In contrast, penguins in the interior of the huddle neither have the space to move nor experience a significant heat loss, and they therefore remain stationary. Through these individual movements, the entire huddle experiences a robust cumulative effect that we identify, describe, and quantify. This mathematical model requires a calculation of the wind flowing around the huddle and of the resulting temperature distribution. Both of these must be recomputed each time an individual penguin moves since the huddle shape changes. Using our simulation results, we find that the key parameters affecting the huddle dynamics are the number of penguins in the huddle, the wind strength, and the amount of uncertainty in the movement of the penguins. Moreover, we find that the lone assumption of individual penguins minimizing their own heat loss results in all penguins having approximately equal access to the warmth of the huddle.

Concepts: Mathematics, Physics, Temperature, Thermodynamics, Heat, Heat transfer, Penguin, Wind


2014 was nominally the warmest year on record for both the globe and northern hemisphere based on historical records spanning the past one and a half centuries(1,2). It was the latest in a recent run of record temperatures spanning the past decade and a half. Press accounts reported odds as low as one-in-650 million that the observed run of global temperature records would be expected to occur in the absence of human-caused global warming. Press reports notwithstanding, the question of how likely observed temperature records may have have been both with and without human influence is interesting in its own right. Here we attempt to address that question using a semi-empirical approach that combines the latest (CMIP5(3)) climate model simulations with observations of global and hemispheric mean temperature. We find that individual record years and the observed runs of record-setting temperatures were extremely unlikely to have occurred in the absence of human-caused climate change, though not nearly as unlikely as press reports have suggested. These same record temperatures were, by contrast, quite likely to have occurred in the presence of anthropogenic climate forcing.

Concepts: Climate, Temperature, Thermodynamics, Heat, Climate change, Solar variation, Global warming, Northern Hemisphere


Although studies have investigated the effects of hydration on performance measures, few studies have investigated how the temperature of the ingested liquid affects performance and core temperature during an exercise session. The hypothesis of the present study was that cold water would improve thermoregulation and performance as measured by bench repetitions to fatigue, broad jump for force and power and total time to exhaustion for cardiovascular fitness

Concepts: Time, Energy, Effect, Temperature, Influenza, Affect, Exercise physiology, Common cold