Discover the most talked about and latest scientific content & concepts.

Concept: Telomerase


Life history theory (LHT) predicts a trade-off between reproductive effort and the pace of biological aging. Energy invested in reproduction is not available for tissue maintenance, thus having more offspring is expected to lead to accelerated senescence. Studies conducted in a variety of non-human species are consistent with this LHT prediction. Here we investigate the relationship between the number of surviving children born to a woman and telomere length (TL, a marker of cellular aging) over 13 years in a group of 75 Kaqchikel Mayan women. Contrary to LHT’s prediction, women who had fewer children exhibited shorter TLs than those who had more children (p = 0.045) after controlling for TL at the onset of the 13-year study period. An “ultimate” explanation for this apparently protective effect of having more children may lay with human’s cooperative-breeding strategy. In a number of socio-economic and cultural contexts, having more chilren appears to be linked to an increase in social support for mothers (e.g., allomaternal care). Higher social support, has been argued to reduce the costs of further reproduction. Lower reproductive costs may make more metabolic energy available for tissue maintenance, resulting in a slower pace of cellular aging. At a “proximate” level, mechanisms involved may include the actions of the gonadal steroid estradiol, which increases dramatically during pregnancy. Estradiol is known to protect TL from the effects of oxidative stress as well as increase telomerase activity, an enzyme that maintains TL. Future research should explore the potential role of social support as well as that of estradiol and other potential biological pathways in the trade-offs between reproductive effort and the pace of cellular aging within and among human as well as in non-human populations.

Concepts: Human, Reproduction, Metabolism, Senescence, Organism, Reproductive system, Telomerase, Telomere


Life stress resulting from early-life experiences and domestic stress is linked with shorter leukocyte telomere length (LTL), but evidence on employment-related stress is scarce. We explored whether unemployment in early adulthood is associated with shorter LTL, a potential biomarker of premature aging.

Concepts: Death, Senescence, Biology, Cell division, Telomerase, Telomere, Immortality


Leucocyte telomere length (LTL) shortening is associated with cardiovascular ischemic events and mortality in humans, but data on its association with subclinical atherosclerosis are scarce. Whether the incidence and severity of subclinical atherosclerosis are associated with the abundance of critically short telomeres, a major trigger of cellular senescence, remains unknown.

Concepts: Death, Senescence, Cell division, Radical, Telomerase, Telomere, Maximum life span, Immortality


Chronic psychological distress has been linked to shorter telomeres, an indication of accelerated aging. Yet, little is known about relations of anxiety to telomeres. We examined whether a typically chronic form of anxiety–phobic anxiety–is related to telomere length.

Concepts: Senescence, Telomerase, Telomere


Psychological stress is suggested to accelerate the rate of biological aging. We investigated whether work-related exhaustion, an indicator of prolonged work stress, is associated with accelerated biological aging, as indicated by shorter leukocyte telomeres, that is, the DNA-protein complexes that cap chromosomal ends in cells.

Concepts: DNA, Gene, Senescence, Cell division, Telomerase, Telomere, Acceleration, Immortality


Telomere shortness in human beings is a prognostic marker of ageing, disease, and premature morbidity. We previously found an association between 3 months of comprehensive lifestyle changes and increased telomerase activity in human immune-system cells. We followed up participants to investigate long-term effects.

Concepts: DNA, Vitamin D, Cancer, Senescence, Prostate cancer, DNA replication, Telomerase, Telomere


DNA methylation age is an accurate biomarker of chronological age and predicts lifespan, but its underlying molecular mechanisms are unknown. In this genome-wide association study of 9907 individuals, we find gene variants mapping to five loci associated with intrinsic epigenetic age acceleration (IEAA) and gene variants in three loci associated with extrinsic epigenetic age acceleration (EEAA). Mendelian randomization analysis suggests causal influences of menarche and menopause on IEAA and lipoproteins on IEAA and EEAA. Variants associated with longer leukocyte telomere length (LTL) in the telomerase reverse transcriptase gene (TERT) paradoxically confer higher IEAA (P < 2.7 × 10-11). Causal modeling indicates TERT-specific and independent effects on LTL and IEAA. Experimental hTERT-expression in primary human fibroblasts engenders a linear increase in DNA methylation age with cell population doubling number. Together, these findings indicate a critical role for hTERT in regulating the epigenetic clock, in addition to its established role of compensating for cell replication-dependent telomere shortening.

Concepts: DNA, Genetics, Gene expression, Histone, Reverse transcriptase, Telomerase, Telomere, Telomerase reverse transcriptase


Telomere length (TL) predicts the onset of cellular senescence in vitro but the diagnostic utility of TL measurement in clinical settings is not fully known. We tested the value of TL measurement by flow cytometry and FISH (flowFISH) in patients with mutations in telomerase and telomere maintenance genes. TL had a discrete and reproducible normal range with definable upper and lower boundaries. While TL above the 50th age-adjusted percentile had a 100% negative predictive value for clinically relevant mutations, the lower threshold in mutation carriers was age-dependent, and adult mutation carriers often overlapped with the lowest decile of controls. The extent of telomere shortening correlated with the age at diagnosis as well as the short telomere syndrome phenotype. Extremely short TL caused bone marrow failure and immunodeficiency in children and young adults, while milder defects manifested as pulmonary fibrosis-emphysema in adults. We prospectively examined whether TL altered treatment decisions for newly diagnosed idiopathic bone marrow failure patients and found abnormally short TL enriched for patients with mutations in some inherited bone marrow failure genes, such asRUNX1, in addition to telomerase and telomere maintenance genes. The result was actionable, altering the choice of treatment regimen and/or hematopoietic stem cell donor in one-fourth of the cases (9 of 38, 24%). We conclude that TL measurement by flowFISH, when used for targeted clinical indications and in limited settings, can influence treatment decisions in ways that improve outcome.

Concepts: DNA, Cancer, Senescence, Bone marrow, DNA repair, Telomerase, Telomere, Hematopoietic stem cell


Telomeres are nucleoprotein caps flanking DNA. They are shortened by cell division and oxidative stress and are lengthened by the enzyme telomerase and DNA exchange during mitosis. Short telomeres induce cellular senescence. As an indicator of oxidative stress and senescence (2 processes thought to be fundamental to aging), telomere length is hypothesized to be a biomarker of aging. This hypothesis has been tested for more than a decade with epidemiologic study methods. In cross-sectional studies, researchers have investigated whether leukocyte telomere length (LTL) is associated with demographic, behavioral, and health variables. In prospective studies, baseline LTL has been used to predict mortality and occasionally other adverse health outcomes. Conflicting data have generated heated debate about the value of LTL as a biomarker of overall aging. In this review, we address the epidemiologic data on LTL and demonstrate that shorter LTL is associated with older age, male gender, Caucasian race, and possibly atherosclerosis; associations with other markers of health are equivocal. We discuss the reasons for discrepancy across studies, including a detailed review of methods for measuring telomere length as they apply to epidemiology. Finally, we conclude with questions about LTL as a biomarker of aging and how epidemiology can be used to answer these questions.

Concepts: Epidemiology, Cancer, Disease, Senescence, Cell division, Radical, Telomerase, Telomere


The enzyme telomerase adds telomeric repeats to chromosome ends to balance the loss of telomeres during genome replication. Telomerase regulation has been implicated in cancer, other human diseases, and ageing, but progress towards clinical manipulation of telomerase has been hampered by the lack of structural data. Here we present the cryo-electron microscopy structure of the substrate-bound human telomerase holoenzyme at subnanometre resolution, showing two flexibly RNA-tethered lobes: the catalytic core with telomerase reverse transcriptase (TERT) and conserved motifs of telomerase RNA (hTR), and an H/ACA ribonucleoprotein (RNP). In the catalytic core, RNA encircles TERT, adopting a well-ordered tertiary structure with surprisingly limited protein-RNA interactions. The H/ACA RNP lobe comprises two sets of heterotetrameric H/ACA proteins and one Cajal body protein, TCAB1, representing a pioneering structure of a large eukaryotic family of ribosome and spliceosome biogenesis factors. Our findings provide a structural framework for understanding human telomerase disease mutations and represent an important step towards telomerase-related clinical therapeutics.

Concepts: DNA, Protein, Cell nucleus, Enzyme, RNA, Reverse transcriptase, Telomerase, Telomere