Discover the most talked about and latest scientific content & concepts.

Concept: Tauopathy


Filamentous inclusions made of hyperphosphorylated tau are characteristic of numerous human neurodegenerative diseases, including Alzheimer’s disease, tangle-only dementia, Pick disease, argyrophilic grain disease (AGD), progressive supranuclear palsy, and corticobasal degeneration. In Alzheimer’s disease and AGD, it has been shown that filamentous tau appears to spread in a stereotypic manner as the disease progresses. We previously demonstrated that the injection of brain extracts from human mutant P301S tau-expressing transgenic mice into the brains of mice transgenic for wild-type human tau (line ALZ17) resulted in the assembly of wild-type human tau into filaments and the spreading of tau inclusions from the injection sites to anatomically connected brain regions. Here we injected brain extracts from humans who had died with various tauopathies into the hippocampus and cerebral cortex of ALZ17 mice. Argyrophilic tau inclusions formed in all cases and following the injection of the corresponding brain extracts, we recapitulated the hallmark lesions of AGD, PSP and CBD. Similar inclusions also formed after intracerebral injection of brain homogenates from human tauopathies into nontransgenic mice. Moreover, the induced formation of tau aggregates could be propagated between mouse brains. These findings suggest that once tau aggregates have formed in discrete brain areas, they become self-propagating and spread in a prion-like manner.

Concepts: Alzheimer's disease, Brain, Cerebral cortex, Neurodegenerative disorders, Dementia, Progressive supranuclear palsy, Tau protein, Tauopathy


Chronic traumatic encephalopathy (CTE) is a neurodegeneration characterized by the abnormal accumulation of hyperphosphorylated tau protein within the brain. Like many other neurodegenerative conditions, at present, CTE can only be definitively diagnosed by post-mortem examination of brain tissue. As the first part of a series of consensus panels funded by the NINDS/NIBIB to define the neuropathological criteria for CTE, preliminary neuropathological criteria were used by 7 neuropathologists to blindly evaluate 25 cases of various tauopathies, including CTE, Alzheimer’s disease, progressive supranuclear palsy, argyrophilic grain disease, corticobasal degeneration, primary age-related tauopathy, and parkinsonism dementia complex of Guam. The results demonstrated that there was good agreement among the neuropathologists who reviewed the cases (Cohen’s kappa, 0.67) and even better agreement between reviewers and the diagnosis of CTE (Cohen’s kappa, 0.78). Based on these results, the panel defined the pathognomonic lesion of CTE as an accumulation of abnormal hyperphosphorylated tau (p-tau) in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci and in an irregular pattern. The group also defined supportive but non-specific p-tau-immunoreactive features of CTE as: pretangles and NFTs affecting superficial layers (layers II-III) of cerebral cortex; pretangles, NFTs or extracellular tangles in CA2 and pretangles and proximal dendritic swellings in CA4 of the hippocampus; neuronal and astrocytic aggregates in subcortical nuclei; thorn-shaped astrocytes at the glial limitans of the subpial and periventricular regions; and large grain-like and dot-like structures. Supportive non-p-tau pathologies include TDP-43 immunoreactive neuronal cytoplasmic inclusions and dot-like structures in the hippocampus, anteromedial temporal cortex and amygdala. The panel also recommended a minimum blocking and staining scheme for pathological evaluation and made recommendations for future study. This study provides the first step towards the development of validated neuropathological criteria for CTE and will pave the way towards future clinical and mechanistic studies.

Concepts: Alzheimer's disease, Neuron, Brain, Cerebral cortex, Cerebrum, Hippocampus, Progressive supranuclear palsy, Tauopathy


A randomized, placebo-controlled, double-blind, multicenter 52-week phase 2 trial of resveratrol in individuals with mild to moderate Alzheimer disease (AD) examined its safety and tolerability and effects on biomarker (plasma Aβ40 and Aβ42, CSF Aβ40, Aβ42, tau, and phospho-tau 181) and volumetric MRI outcomes (primary outcomes) and clinical outcomes (secondary outcomes).

Concepts: Alzheimer's disease, Clinical trial, Primary education, Mental status examination, Tauopathy, Proteopathy


Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory deficits and other cognitive disturbances. Neuropathologically, AD is characterized by the progressive loss of basal forebrain cholinergic neurons that innervate the hippocampus and cortex and the abnormal extracellular accumulation of amyloid-β and intracellular tau protein. Current research on AD is focused on the mechanisms underlying the abnormal oligomerization, fibrillation, and accumulation of the amyloid-β and tau proteins, mechanisms that may alter the dynamics of this accumulation and on experimental therapeutics approaches aimed at the clearance of the abnormally folded proteins and other potentially neuroprotective interventions. This review will summarize the main areas of investigation in AD and present ways forward for future work.

Concepts: Alzheimer's disease, Brain, Neurology, Acetylcholine, Tau protein, Basal forebrain, Tauopathy, Proteopathy


Chronic traumatic encephalopathy (CTE) is a tauopathy associated with prior exposure to repetitive head impacts, such as those incurred through American football and other collision sports. Diagnosis is made through neuropathological examination. Many of the clinical features of CTE are common in the general population, with and without a history of head impact exposure, making clinical diagnosis difficult. As is now common in the diagnosis of other neurodegenerative disorders, such as Alzheimer’s disease, there is a need for methods to diagnose CTE during life through objective biomarkers.

Concepts: Alzheimer's disease, Greek loanwords, Neurology, Neurodegenerative disorders, Dementia, Tau protein, Tauopathy, Proteopathy


Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer’s disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

Concepts: Alzheimer's disease, Nervous system, Neuron, Brain, Human brain, Tau protein, Tauopathy, Proteopathy


Although tau accumulation is a feature of several neurodegenerative conditions treatment options for these conditions are non-existent. Targeting tau kinases represents a potential therapeutic approach. Small molecules in the diaminothiazole class are potent tau kinase inhibitors that target CDK5 and GSK3β. Lead compounds from the series have IC50 values toward CDK5/p25 and GSK3β in the low nanomolar range and no observed toxicity in the therapeutic dose range. Neuronal protective effects and decreased PHF-1 immunoreactivity were observed in two animal models, 3xTg-AD and CK-p25. Treatment nearly eliminated sarkosyl-insoluble tau with the most prominent effect on the phosphorylation at Ser404. Treatment also induced the recovery of memory in a fear conditioning assay. Given the contribution of both CDK5/p25 and GSK3β to tau phosphorylation, effective treatment of tauopathies may require dual kinase targeting.

Concepts: Alzheimer's disease, Adenosine triphosphate, Effect, Effectiveness, Kinase, Phosphorylation, Tau protein, Tauopathy


Alzheimer’s disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer’s disease, neuropathology and atrophy preferentially affect ‘hub’ brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer’s disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer’s disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer’s disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker ‘small-world’ properties. Conversely, in PSP, unlike in Alzheimer’s disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer’s disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.

Concepts: Alzheimer's disease, Positron emission tomography, Neurodegenerative disorders, Graph theory, Distance, Tau protein, Centrality, Tauopathy


The RNA-like endoplasmic reticulum kinase (PERK) is genetically associated with the tauopathy progressive supranuclear palsy (PSP). To elucidate the functional mechanisms underlying this association, we explored PERK activity in brains of PSP patients and its function in three tauopathy models (cultured human neurons overexpressing 4-repeat wild-type tau or treated with the environmental neurotoxin annonacin, and P301S tau transgenic mice). In vitro, treatment with a pharmacological PERK activator CCT020312 or PERK overexpression reduced tau phosphorylation, tau conformational change and 4-repeat tau isoforms, and increased cell viability. In vivo, the PERK activator significantly improved memory and locomotor function, reduced tau pathology, and prevented dendritic spine and motoneuron loss in P301S tau mice. Importantly, the PERK substrate EIF2A, mediating some detrimental effects of PERK signaling, was downregulated in PSP brains and tauopathy models, suggesting that the alternative PERK-NRF2 pathway accounts for these beneficial effects in the context of tauopathies. In summary, PERK activation may be a novel strategy to treat PSP and eventually other tauopathies.

Concepts: Alzheimer's disease, Gene expression, Enzyme, Endoplasmic reticulum, Progressive supranuclear palsy, Corticobasal degeneration, Tau protein, Tauopathy


Abnormal tau metabolism followed by formation of tau deposits causes a number of neurodegenerative diseases called tauopathies including Alzheimer’s disease. Hyperphosphorylation of tau protein precedes tau aggregation and is a topic of interest for the development of pharmacological interventions to prevent pathology progression at early stages. The development of a mathematical model of multisite phosphorylation of tau would be helpful for searching for the targets of pharmacological interventions and candidates for biomarkers of pathology progression. In the present study, we for the first time developed a model of multisite phosphorylation of tau protein and elucidated the relative contribution of kinases to phosphorylation of distinct sites. The model describes phosphorylation of tau or PKA-prephosphorylated tau by GSK3β and CDK5 and dephosphorylation by PP2A, accurately reproducing the data for short-term kinetics of tau (de)phosphorylation. Our results suggest that kinase inhibition may more specifically prevent tau hyperphosphorylation, e.g., on PHF sites, which are key biomarkers of pathological changes in Alzheimer’s disease. The main features of our model are partial phosphorylation of tau residues and merging of random and sequential mechanisms of multisite phosphorylation within the framework of the probability-based approach assuming independent phosphorylation events.

Concepts: Alzheimer's disease, Signal transduction, Adenosine triphosphate, Enzyme, Neurodegenerative disorders, Tau protein, Tauopathy, Proteopathy