Discover the most talked about and latest scientific content & concepts.

Concept: Tasmania


Devil facial tumour disease (DFTD) is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease.

Concepts: Immune system, Gene, Genetics, Major histocompatibility complex, MHC class I, Tasmania, Devil facial tumour disease, Tasmanian Devil


The impact of salmon lice on the survival of migrating Atlantic salmon smolts was studied by comparing the adult returns of sea-ranched smolts treated for sea lice using emamectin benzoate or substance EX with untreated control groups in the River Dale in western Norway. A total of 143 500 smolts were released in 35 release groups in freshwater from 1997 to 2009 and in the fjord system from 2007 to 2009. The adult recaptures declined gradually with release year and reached minimum levels in 2007. This development corresponded with poor marine growth and increased age at maturity of ranched salmon and in three monitored salmon populations and indicated unfavourable conditions in the Norwegian Sea. The recapture rate of treated smolts was significantly higher than the controls in three of the releases performed: the only release in 1997, one of three in 2002 and the only group released in sea water in 2007. The effect of treating the smolts against salmon lice was smaller than the variability in return rates between release groups, and much smaller that variability between release years, but its overall contribution was still significant (P < 0.05) and equivalent to an odds ratio of the probability of being recaptured of 1.17 in favour of the treated smolts. Control fish also tended to be smaller as grilse (P = 0.057), possibly due to a sublethal effect of salmon lice.

Concepts: Parasites, Salmon, Norway, Atlantic salmon, Salmo, Tasmania, Sea louse, Salmon louse


The last known Tasmanian tiger (Thylacinus cynocephalus)-aka the thylacine-died in 1936. Because its natural behavior was never scientifically documented, we are left to infer aspects of its behavior from museum specimens and historical recollections of bushmen. Recent advances in brain imaging have made it possible to scan postmortem specimens of a wide range of animals, even more than a decade old. Any thylacine brain, however, would be more than 100 years old. Here, we show that it is possible to reconstruct white matter tracts in two thylacine brains. For functional interpretation, we compare to the white matter reconstructions of the brains of two Tasmanian devils (Sarcophilus harrisii). We reconstructed the cortical projection zones of the basal ganglia and major thalamic nuclei. The basal ganglia reconstruction showed a more modularized pattern in the cortex of the thylacine, while the devil cortex was dominated by the putamen. Similarly, the thalamic projections had a more orderly topography in the thylacine than the devil. These results are consistent with theories of brain evolution suggesting that larger brains are more modularized. Functionally, the thylacine’s brain may have had relatively more cortex devoted to planning and decision-making, which would be consistent with a predatory ecological niche versus the scavenging niche of the devil.

Concepts: Basal ganglia, Thalamus, Marsupial, Tasmania, Dingo, Tasmanian Devil, Dasyuromorphia, Dasyuromorphs


Devil facial tumour disease (DFTD) is a transmissible cancer devastating the Tasmanian devil (Sarcophilus harrisii) population. The cancer cell is the ‘infectious’ agent transmitted as an allograft by biting. Animals usually die within a few months with no evidence of antibody or immune cell responses against the DFTD allograft. This lack of anti-tumour immunity is attributed to an absence of cell surface major histocompatibility complex (MHC)-I molecule expression. While the endangerment of the devil population precludes experimentation on large experimental groups, those examined in our study indicated that immunisation and immunotherapy with DFTD cells expressing surface MHC-I corresponded with effective anti-tumour responses. Tumour engraftment did not occur in one of the five immunised Tasmanian devils, and regression followed therapy of experimentally induced DFTD tumours in three Tasmanian devils. Regression correlated with immune cell infiltration and antibody responses against DFTD cells. These data support the concept that immunisation of devils with DFTD cancer cells can successfully induce humoral responses against DFTD and trigger immune-mediated regression of established tumours. Our findings support the feasibility of a protective DFTD vaccine and ultimately the preservation of the species.

Concepts: Immune system, Antibody, Cancer, Oncology, Immunology, Tasmania, Devil facial tumour disease, Tasmanian Devil


Immunoglobulins such as IgG and IgM have been shown to induce anti-tumour cytotoxic activity. In the present study we therefore explore total serum IgG and IgM expression dynamics in 23 known-aged Tasmanian devils (Sarcophilus harrisii) of which 9 where affected by Devil Facial Tumour Disease (DFTD). DFTD is clonally transmissible cancer that has caused massive declines in devil numbers. Our analyses revealed that IgM and IgG expression levels as well as IgM/IgG ratios decreased with increasing devil age. Neither age, sex, IgM nor IgG expression levels affected devil DFTD status in our analyses. However, devils with increased IgM relative to IgG expression levels had significantly lower DFTD prevalence. Our results therefore suggest that IgM/IgG ratios may play an important role in determining devil susceptibility to DFTD. We consequently propose that our findings warrant further studies to elucidate the underpinning(s) of devil IgM/IgG ratios and DFTD status.

Concepts: Immune system, Cancer, Immunology, Tasmania, Devil facial tumour disease, Tasmanian Devil, Dasyuridae, Sarcophilus


The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.

Concepts: DNA, Genetics, Cancer, Mutation, Tasmania, Devil facial tumour disease, Tasmanian Devil, Dasyuridae


Increases in environmental temperature predicted to result from global warming have direct effects on performance of ectotherms. Moreover, cardiac function has been observed to limit the tolerance to high temperatures. Here we show that two wild populations of Atlantic salmon originating from northern and southern extremes of its European distribution have strikingly similar cardiac responses to acute warming when acclimated to common temperatures, despite different local environments. Although cardiac collapse starts at 21-23 °C with a maximum heart rate of ~\n150 beats per min (bpm) for 12 °C-acclimated fish, acclimation to 20 °C considerably raises this temperature (27.5 °C) and maximum heart rate (~\n200 bpm). Only minor population differences exist and these are consistent with the warmer habitat of the southern population. We demonstrate that the considerable cardiac plasticity discovered for Atlantic salmon is largely independent of natural habitat, and we propose that observed cardiac plasticity may aid salmon to cope with global warming.

Concepts: Habitat, Natural environment, Pulse, Difference, Salmon, Pacific Ocean, Atlantic salmon, Tasmania


Athrotaxis cupressoides is a slow growing and long-lived conifer that occurs in the subalpine temperate forests of Tasmania, a continental island to the south of Australia. In 1960-61 human-ignited wildfires occurred during an extremely dry summer that killed many A. cupressoides stands on the high plateau in the center of Tasmania. That fire year, coupled with subsequent regeneration failure, caused a loss of ca. 10% of the geographic extent of this endemic Tasmanian forest type. To provide historical context for these large scale fire events we (a) collected dendroecological, floristic and structural data, (b) documented the postfire survival and regeneration of A. cupressoides and co-occurring understory species, and © assessed postfire understory plant community composition and flammability. We found that fire frequency did not vary following the arrival of European settlers, and that A. cupressoides populations were able to persist under a regime of low-to-mid- severity fires prior to the 1960 fires. Our data indicate that the 1960 fires were (a) of greater severity than previous fires, (b) herbivory by native marsupials may limit seedling survival in both burned and unburned A. cupressoides stands and © the loss of A. cupressoides populations is largely irreversible given the relatively high fuel loads of postfire vegetation communities that are dominated by resprouting shrubs. We suggest the feedback between regeneration failure and increased flammability will be further exacerbated by a warmer and drier climate causing A. cupressoides to contract to the most fire-proof landscape settings. This article is protected by copyright. All rights reserved.

Concepts: Australia, The Loss, All rights reserved, Copyright, Tasmania, Cupressaceae, Forests, Athrotaxis cupressoides


We show how spatial variability in channel bed morphology affects the hydraulic characteristics of river reaches available to Atlantic salmon parr (Salmo salar) under different flow conditions in an upland stream. The study stream, the Girnock Burn, is a long-term monitoring site in the Scottish Highlands. Six site characterised by different bed geometry and morphology were investigated. Detailed site bathymetries were collected and combined with discharge time series in a 2D hydraulic model to obtain spatially distributed depth-averaged velocities under different flow conditions. Available habitat (AH) was estimated for each site. Stream discharge was used according to the critical displacement velocity (CDV) approach. CDV defines a velocity threshold above which salmon parr are not able to hold station and effective feeding opportunities or habitat utilization are reduced, depending on fish size and water temperature. An average value of the relative available habitat () for the most significant period for parr growth - April to May - was used for inter-site comparison and to analyse temporal variations over 40years. Results show that some sites are more able than others to maintain zones where salmon parr can forage unimpeded by high flow velocities under both wet and dry conditions. With lower flow velocities, dry years offer higher values of than wet years. Even though can change considerably across the sites as stream flow changes, the directions of change are consistent. Relative available habitat (RAH) shows a strong relationship with discharge per unit width, whilst channel slope and bed roughness either do not have relevant impact or compensate each other. The results show that significant parr habitat was available at all sites across all flows during this critical growth period, suggesting that hydrological variability is not a factor limiting growth in the Girnock.

Concepts: Hydrology, Salmon, Velocity, Atlantic salmon, Salmo, Tasmania, Relative velocity, Displacement


Atlantic salmon Salmo salar smolts were produced with similar energetic states as wild S. salar and the effect of low energetic state on smolt migration was tested. The total energetic state of the fish (body lipids and proteins) in the spring was correlated with Fulton’s condition factor (K). Fish at a low energetic state swam slower but migrated further than fish at a higher energetic state when tested in two experimental streams. During a period of starvation throughout the winter and spring, fish conserved their body-lipid reserves at 1·5% by using more protein as an energy source and the metabolic shift occurred between 3·5 and 1·5% body lipids. An energetic state of approximately 3·5 kJ g-1(K ≈ 0·65) appeared to be the critical limit for survival.

Concepts: Protein, Metabolism, Energy, Salmon, Pacific Ocean, Atlantic salmon, Salmo, Tasmania