Discover the most talked about and latest scientific content & concepts.

Concept: Tadpole


Tadpoles of the monotypic Indian dancing frog family Micrixalidae have remained obscure for over 125 years. Here we report the discovery of the elusive tadpoles of Micrixalus herrei from the sand beds of a forested stream in southern Western Ghats, and confirm their identity through DNA barcoding. These actively burrowing tadpoles lead an entirely fossorial life from eggs to late metamorphic stages. We describe their internal and external morphological characters while highlighting the following features: eel-like appearance, extensively muscularized body and tail, reduced tail fins, skin-covered eyes, delayed development of eye pigmentation in early pre-metamorphic stages (Gosner stages 25-29), prominent tubular sinistral spiracle, large transverse processes on vertebrae II and III, ankylosed ribs on transverse processes of vertebra II, notochord terminating before the atlantal cotyle-occipital condyle junction, absence of keratodonts, serrated well-formed jaw sheaths, and extensive calcified endolymphatic sacs reaching sacrum posteriorly. The tadpole gut contains mostly fine sediments and sand. We discuss the eel-like morphology and feeding habits of M. herrei in the context of convergence with other well-known fossorial tadpoles. This discovery builds the knowledge base for further comparative analyses and conservation of Micrixalus, an ancient and endemic lineage of Indian frogs.

Concepts: Eye, Vertebra, Vertebrate, Frog, Tadpole, Western Ghats, Notochord, Labyrinthodontia


The Indian Purple frog, Nasikabatrachus sahyadrensis, occupies a basal phylogenetic position among neobatrachian anurans and has a very unusual life history. Tadpoles have a large ventral oral sucker, which they use to cling to rocks in torrents, whereas metamorphs possess adaptations for life underground. The developmental changes that underlie these shifts in habits and habitats, and especially the internal remodeling of the cranial and postcranial skeleton, are unknown. Using a nearly complete metamorphic series from free-living larva to metamorph, we describe the postembryonic skeletal ontogeny of this ancient and unique monotypic lineage. The torrent-dwelling larva possesses a dorsoventrally flattened body and a head with tiny dorsal eyes, robust lower and upper jaw cartilages, well-developed trabecular horns, and a definable gap between the trabecular horns and the tip of the snout. Unlike tadpoles of many other frogs, those of Nasikabatrachus retain larval mouthparts into late metamorphic stages. This unusual feature enables the larvae to maintain their clinging habit until near the end of metamorphosis. The subsequent ontogenetic shift from clinging to digging is correlated with rapid morphological changes and behavioral modifications. Metamorphs are equipped with a shortened tibiafibula and ossified prehallical elements, which likely facilitate initial digging using the hind limbs. Subsequently, the frogs may shift to headfirst burrowing by using the wedge-shaped skull, anteriorly positioned pectoral girdle, well-developed humeral crests and spatula-shaped forelimbs. The transition from an aquatic life in torrents to a terrestrial life underground entails dramatic changes in skeletal morphology and function that represent an extreme in metamorphic remodeling. Our analysis enhances the scope for detailed comparative studies across anurans, a group renowned for the diversity of its life history strategies.

Concepts: Developmental biology, Purple, Amphibian, Frog, Tadpole, Metamorphosis, Purple frog


We describe a new species of fanged frog (Limnonectes larvaepartus) that is unique among anurans in having both internal fertilization and birth of tadpoles. The new species is endemic to Sulawesi Island, Indonesia. This is the fourth valid species of Limnonectes described from Sulawesi despite that the radiation includes at least 15 species and possibly many more. Fewer than a dozen of the 6455 species of frogs in the world are known to have internal fertilization, and of these, all but the new species either deposit fertilized eggs or give birth to froglets.

Concepts: Reproduction, Philippines, Amphibian, Frog, Tadpole, Frogs, Archaeobatrachia


The decline of amphibian populations, particularly frogs, is often cited as an example in support of the claim that Earth is undergoing its sixth mass extinction event. Amphibians seem to be particularly sensitive to emerging diseases (e.g., fungal and viral pathogens), yet the diversity and geographic distribution of infectious agents are only starting to be investigated. Recent work has linked a previously undescribed protist with mass-mortality events in the United States, in which infected frog tadpoles have an abnormally enlarged yellowish liver filled with protist cells of a presumed parasite. Phylogenetic analyses revealed that this infectious agent was affiliated with the Perkinsea: a parasitic group within the alveolates exemplified by Perkinsus sp., a “marine” protist responsible for mass-mortality events in commercial shellfish populations. Using small subunit (SSU) ribosomal DNA (rDNA) sequencing, we developed a targeted PCR protocol for preferentially sampling a clade of the Perkinsea. We tested this protocol on freshwater environmental DNA, revealing a wide diversity of Perkinsea lineages in these environments. Then, we used the same protocol to test for Perkinsea-like lineages in livers of 182 tadpoles from multiple families of frogs. We identified a distinct Perkinsea clade, encompassing a low level of SSU rDNA variation different from the lineage previously associated with tadpole mass-mortality events. Members of this clade were present in 38 tadpoles sampled from 14 distinct genera/phylogroups, from five countries across three continents. These data provide, to our knowledge, the first evidence that Perkinsea-like protists infect tadpoles across a wide taxonomic range of frogs in tropical and temperate environments, including oceanic islands.

Concepts: Infectious disease, Bacteria, Infection, Transmission and infection of H5N1, Extinction, Amphibian, Frog, Tadpole


Understanding the external stimuli and natural contexts that elicit complex behaviors, such as parental care, is key in linking behavioral mechanisms to their real-life function. Poison frogs provide obligate parental care by shuttling their tadpoles from terrestrial clutches to aquatic nurseries, but little is known about the proximate mechanisms that control these behaviors. In this study, we used Allobates femoralis, a poison frog with predominantly male parental care, to investigate whether tadpole transport can be induced in both sexes by transferring unrelated tadpoles to the backs of adults in the field. Specifically, we asked if the presence of tadpoles on an adult’s back can override the decision-making rules preceding tadpole pick-up and induce the recall of spatial memory necessary for finding tadpole deposition sites. We used telemetry to facilitate accurate tracking of individual frogs and spatial analyses to compare movement trajectories. All tested individuals transported their foster-tadpoles to water pools outside their home area. Contrary to our expectation, we found no sex difference in the likelihood to transport nor in the spatial accuracy of finding tadpole deposition sites. We reveal that a stereotypical cascade of parental behaviors that naturally involves sex-specific offspring recognition strategies and the use of spatial memory can be manipulated by experimental placement of unrelated tadpoles on adult frogs. As individuals remained inside their home area when only the jelly from tadpole-containing clutches was brushed on the back, we speculate that tactile rather than chemical stimuli are triggering these parental behaviors.

Concepts: Male, Sex, Adult, Amphibian, Frog, Tadpole, Aquatic animal, Poison dart frog


Emerging infectious diseases such as chytridiomycosis and ranavirus infections are important contributors to the worldwide decline of amphibian populations. We reviewed data on 247 anuran mortality events in 43 States of the United States from 1999-2015. Our findings suggest that a severe infectious disease of tadpoles caused by a protist belonging to the phylum Perkinsea might represent the third most common infectious disease of anurans after ranavirus infections and chytridiomycosis. Severe Perkinsea infections (SPI) were systemic and led to multiorganic failure and death. The SPI mortality events affected numerous anuran species and occurred over a broad geographic area, from boreal to subtropical habitats. Livers from all PCR-tested SPI-tadpoles (n = 19) were positive for the Novel Alveolate Group 01 (NAG01) of Perkinsea, while only 2.5% histologically normal tadpole livers tested positive (2/81), suggesting that subclinical infections are uncommon. Phylogenetic analysis demonstrated that SPI is associated with a phylogenetically distinct clade of NAG01 Perkinsea. These data suggest that this virulent Perkinsea clade is an important pathogen of frogs in the United States. Given its association with mortality events and tendency to be overlooked, the potential role of this emerging pathogen in amphibian declines on a broad geographic scale warrants further investigation.

Concepts: Disease, Infectious disease, Microbiology, Infection, Amphibian, Frog, Tadpole, Decline in amphibian populations


Insecticide tolerance and cross-tolerance in nontarget organisms is often overlooked despite its potential to buffer natural systems from anthropogenic influence. The authors exposed wood frog tadpoles from 15 populations to three acetylcholine esterase-inhibiting insecticides and found widespread variation in insecticide tolerance and evidence for cross-tolerance to these insecticides. The present study demonstrates that amphibian populations with tolerance to one pesticide may be tolerant to many other pesticides. Environ. Toxicol. Chem. © 2013 SETAC.

Concepts: Pesticide, Insecticide, Pesticide application, DDT, Amphibian, Frog, Tadpole, Pesticides


Multiple anthropogenic stressors cause worldwide amphibian declines. Among several poorly investigated causes is global pollution of aquatic ecosystems with endocrine disrupting compounds (EDCs). These substances interfere with the endocrine system and can affect the sexual development of vertebrates including amphibians. We test the susceptibility to an environmentally relevant contraceptive, the artificial estrogen 17α-ethinylestradiol (EE2), simultaneously in three deeply divergent systematic anuran families, a model-species, Xenopus laevis (Pipidae), and two non-models, Hyla arborea (Hylidae) and Bufo viridis (Bufonidae). Our new approach combines synchronized tadpole exposure to three EE2-concentrations (50, 500, 5,000 ng/L) in a flow-through-system and pioneers genetic and histological sexing of metamorphs in non-model anurans for EDC-studies. This novel methodology reveals striking quantitative differences in genetic-male-to-phenotypic-female sex reversal in non-model vs. model species. Our findings qualify molecular sexing in EDC-analyses as requirement to identify sex reversals and state-of-the-art approaches as mandatory to detect species-specific vulnerabilities to EDCs in amphibians.

Concepts: Endocrine system, Ovary, Endocrine disruptor, Tetrapod, Amphibian, Frog, Tadpole, Pipidae


Many organisms face energetic trade-offs between defense against parasites and other host processes that may determine overall consequences of infection. These trade-offs may be particularly evident during unfavorable environmental conditions or energetically demanding life history stages. Amphibian metamorphosis, an ecologically important developmental period, is associated with drastic morphological and physiological changes and substantial energetic costs. Effects of the trematode parasite Echinostoma trivolvis have been documented during early amphibian development, but effects during later development and metamorphosis are largely unknown. Using a laboratory experiment, we examined the energetic costs of late development and metamorphosis coupled with E. trivolvis infection in wood frogs, Lithobates [=Rana] sylvaticus. Echinostoma infection intensity did not differ between tadpoles examined prior to and after completing metamorphosis, suggesting that metacercariae were retained through metamorphosis. Infection with E. trivolvis contributed to a slower growth rate and longer development period prior to the initiation of metamorphosis. In contrast, E. trivolvis infection did not affect energy expenditure during late development or metamorphosis. Possible explanations for these results include the presence of parasites not interfering with pronephros degradation during metamorphosis or the mesonephros compensating for any parasite damage. Overall, the energetic costs of metamorphosis for wood frogs were comparable to other species with similar life history traits, but differed from a species with a much shorter duration of metamorphic climax. Our findings contribute to understanding the possible role of energetic trade-offs between parasite defense and host processes by considering parasite infection with simultaneous energetic demands during a sensitive period of development.

Concepts: Developmental biology, Amphibian, Frog, Tadpole, Metamorphosis, Rana, Wood Frog, Lithobates


Worldwide amphibian populations are declining due to habitat loss, disease and pollution. Vulnerability to environmental contaminants such as pesticides will be dependent on the species, the sensitivity of the ontogenic life stage and hence the timing of exposure and the exposure pathway. Herein we investigated the biochemical tissue ‘fingerprint’ in spawn and early-stage tadpoles of the Common frog, Rana temporaria, using attenuated total reflection-Fourier-transform infrared (ATR-FTIR) spectroscopy with the objective of observing differences in the biochemical constituents of the respective amphibian tissues due to varying water quality in urban and agricultural ponds. Our results demonstrate that levels of stress (marked by biochemical constituents such as glycogen that are involved in compensatory metabolic mechanisms) can be observed in tadpoles present in the pond most impacted by pollution (nutrients and pesticides), but large annual variability masked any inter-site differences in the frog spawn. ATR-FTIR spectroscopy is capable of detecting differences in tadpoles that are present in selected ponds with different levels of environmental perturbation and thus serves as a rapid and cost effective tool in assessing stress-related effects of pollution in a vulnerable class of organism.

Concepts: Metabolism, Amphibian, Frog, Tadpole, Rana, Articles containing video clips, Common Frog