SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: T-cadherin

171

Adiponectin is an adipose derived hormone that declines in obesity. We have previously shown that exogenous administration of adiponectin reduces allergic airways responses in mice. T-cadherin (T-cad; Cdh13) is a binding protein for the high molecular weight isoforms of adiponectin. To determine whether the beneficial effects of adiponectin on allergic airways responses require T-cad, we sensitized wildtype (WT), T-cadherin deficient (T-cad(-/-)) and adiponectin and T-cad bideficient mice to ovalbumin (OVA) and challenged the mice with aerosolized OVA or PBS. Compared to WT, T-cad(-/-) mice were protected against OVA-induced airway hyperresponsiveness, increases in BAL inflammatory cells, and induction of IL-13, IL-17, and eotaxin expression. Histological analysis of the lungs of OVA-challenged T-cad(-/-) versus WT mice indicated reduced inflammation around the airways, and reduced mucous cell hyperplasia. Combined adiponectin and T-cad deficiency reversed the effects of T-cad deficiency alone, indicating that the observed effects of T-cad deficiency require adiponectin. Compared to WT, serum adiponectin was markedly increased in T-cad(-/-) mice, likely because adiponectin that is normally sequestered by endothelial T-cad remains free in the circulation. In conclusion, T-cad does not mediate the protective effects of adiponectin. Instead, mice lacking T-cad have reduced allergic airways disease, likely because elevated serum adiponectin levels act on other adiponectin signaling pathways.

Concepts: Inflammation, Proteins, Protein, Gene, Asthma, Obesity, Cadherin, T-cadherin

0

Adiponectin, an adipocyte-derived circulating protein, accumulates in the heart, vascular endothelium, and skeletal muscles through an interaction with T-cadherin (T-cad), a unique glycosylphosphatidylinositol (GPI)-anchored cadherin. Recent studies have suggested that this interaction is essential for adiponectin-mediated cardiovascular protection. However, the precise protein-protein interaction between adiponectin and T-cad remains poorly characterized. Using ELISA-based and surface plasmon analyses, we report here that T-cad fused with IgG Fc as a fusion-tag by replacing its GPI-anchor specifically bound both hexameric and larger multimeric adiponectin with a dissociation constant of approximately 1.0 nM and without any contribution from other cellular or serum factors. The extracellular T-cad repeats 1 and 2 were critical for the observed adiponectin binding, which is required for classical cadherin-mediated cell-to-cell adhesion. Moreover, the 130 kDa prodomain-bearing T-cad, uniquely expressed on the cell surface among members of the cadherin family and predominantly increased by adiponectin, contributed significantly to adiponectin binding. Inhibition of prodomain-processing by a prohormone convertase inhibitor increased 130 kDa T-cad levels and also enhanced adiponectin binding to endothelial cells both by more preferential cell-surface localization and by higher adiponectin-binding affinity of 130 kDa T-cad relative to 100 kDa T-cad. The preferential cell-surface localization of 130 kDa T-cad relative to 100 kDa T-cad was also observed in normal mice aorta in vivo In conclusion, our study shows that a unique key feature of the T-cad prodomain is its involvement in binding of the T-cad repeats 1 and 2 to adiponectin and also demonstrates that adiponectin positively regulates T-cad abundance.

Concepts: Protein, Heart, Blood vessel, Endothelium, VE-cadherin, Cadherin, T-cadherin

0

Cadherin is a cell adhesion molecule widely expressed in the nervous system. Previously, we analyzed the expression of nine classic cadherins (Cdh4, Cdh6, Cdh7, Cdh8, Cdh9, Cdh10, Cdh11, Cdh12, and Cdh20) and T-cadherin (Cdh13) in the developing postnatal common marmoset (Callithrix jacchus) brain, and found differential expressions between mice and marmosets. In this study, to explore primate-specific cadherin expression at the embryonic stage, we extensively analyzed the expression of these cadherins in the developing embryonic marmoset brain. Each cadherin showed differential spatial and temporal expression and exhibited temporally complicated expression. Furthermore, the expression of some cadherins differed from that in rodent brains, even at the embryonic stage. These results suggest the possibility that the differential expressions of diverse cadherins are involved in primate specific cortical development, from the prenatal to postnatal period.

Concepts: Neuron, Brain, Human brain, Cerebral cortex, Common Marmoset, Callithrix, Callitrichidae, T-cadherin

0

T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

Concepts: DNA, Gene, Gene expression, Cancer, Extracellular matrix, Mesenchymal stem cell, Stromal cell, T-cadherin

0

Cortical efferent and afferent fibers are arranged in a stereotyped pattern in the intermediate zone (IZ). Here, we studied the mechanism of axonal pathway formation by identifying a molecule that is expressed in a subset of cortical axons in the rat. We found that T-cadherin (T-cad), a member of the cadherin family, is expressed in deep-layer cell axons projecting to subcortical structures, but not in upper layer callosal axons projecting to the contralateral cortex. Ectopic expression of T-cad in upper layer cells induced axons to project toward subcortical structures via the upper part of the IZ. Moreover, the axons of deep-layer cells in which T-cad expression was suppressed by RNAi projected towards the contralateral cortex via an aberrant route. These results suggest that T-cad is involved in axonal pathway formation in the developing cortex.

Concepts: DNA, Neuron, Gene, Gene expression, Bacteria, Cerebral cortex, Cadherin, T-cadherin

0

Members of the cadherin superfamily of proteins are involved in diverse biological processes such as morphogenesis, sound transduction, and neuronal connectivity. Key to cadherin function is their extracellular domain containing cadherin repeats, which can mediate interactions involved in adhesion and cell signaling. Recent cellular, biochemical, and structural studies have revealed that physical interaction among cadherins is more complex than originally thought. Here we review work on new cadherin complexes and discuss how the classification of the mammalian family can be used to search for additional cadherin-interacting partners. We also highlight some of the challenges in cadherin research; namely, the characterization of a cadherin connectome in biochemical and structural terms, as well as the elucidation of molecular mechanisms underlying the functional diversity of nonclassical cadherins in vivo.

Concepts: DNA, Molecular biology, Species, Interaction, Emergence, Cadherin, Cadherins, T-cadherin

0

Loss of cadherin 1 (CDH1; also known as epithelial cadherin (E-cadherin)) is used for the diagnosis and prognosis of epithelial cancers. However, it should not be ignored that the superfamily of transmembrane cadherin proteins encompasses more than 100 members in humans, including other classical cadherins, numerous protocadherins and cadherin-related proteins. Elucidation of their roles in suppression versus initiation or progression of various tumour types is a young but fascinating field of molecular cancer research. These cadherins are very diverse in both structure and function, and their mutual interactions seem to influence biological responses in complex and versatile ways.

Concepts: Cancer, Species, Actin, Transmembrane protein, Cadherin, Beta-catenin, CDH1, T-cadherin

0

The protocadherins represent the biggest subgroup within the cadherin superfamily of transmembrane glycoproteins. In contrast to classical type I cadherins, protocadherins in general exhibit only moderate adhesive activity. During embryogenesis they are involved in cell signaling and regulate diverse morphogenetic processes including morphogenetic movements during gastrulation and neural crest migration. The two protocadherins paraxial protocadherin (PAPC) and axial protocadherin (AXPC) are indispensable for proper gastrulation movements in Xenopus and zebrafish. The closest relative PCNS instead, is required for neural crest and somite formation. Here we show that cranial neural crest (CNC) cells in addition to PCNS express PAPC, but not AXPC. Overexpression of PAPC resulted in comparable migration defects as knockdown of PCNS. Moreover, reconstitution experiments revealed that PAPC is able to replace PCNS in CNC cells, indicating that both protocadherins can regulate CNC migration. © 2013 Wiley Periodicals, Inc.

Concepts: Gene expression, Embryo, Developmental biology, Germ layer, Neural crest, Cadherin, Protocadherin, T-cadherin

0

T-cadherin is a unique member of the cadherin superfamily of adhesion molecules. In contrast to “classical” cadherins, T-cadherin lacks transmembrane and cytoplasmic domains and is anchored to the cell membrane via a glycosilphosphoinositol moiety. T-cadherin is predominantly expressed in cardiovascular system. Clinical and biochemical studies evidence that expression of T-cadherin increases in post-angioplasty restenosis and atherosclerotic lesions-conditions associated with endothelial dysfunction and pathological expression of adhesion molecules. Here, we provide data suggesting a new signaling mechanism by which T-cadherin regulates endothelial permeability. T-cadherin overexpression leads to VE-cadherin phosphorylation on Y731 (β-catenin-binding site), VE-cadherin clathrin-dependent endocytosis and its degradation in lysosomes. Moreover, T-cadherin overexpression results in activation of Rho GTPases signaling and actin stress fiber formation. Thus, T-cadherin up-regulation is involved in degradation of a key endothelial adhesion molecule, VE-cadherin, resulting in the disruption of endothelial barrier function. Our results point to the role of T-cadherin in regulation of endothelial permeability and its possible engagement in endothelial dysfunction.

Concepts: Protein, Cell, Cell membrane, Endothelium, Endocytosis, VE-cadherin, Cadherin, T-cadherin

0

O-Mannosylation is a vital protein modification. In humans, defective O-mannosylation of α-dystroglycan results in severe congenital muscular dystrophies. However, other proteins bearing this modification in vivo are still largely unknown. Here, we describe a highly reliable method combining glycosidase treatment with LC-MS analyses to identify mammalian O-mannosylated proteins from tissue sources. Our workflow identified T-cadherin (H-cadherin, CDH13) as a novel O-mannosylated protein. In contrast to known O-mannosylated proteins, single mannose residues (Man-α-Ser/Thr) are attached to this cell adhesion molecule. Conserved O-glycosylation sites in T-, E- and N-cadherins from different species, point to a general role of O-mannosyl glycans for cadherin function.

Concepts: DNA, Cell, Glucose, Species, Actin, Myosin, Cadherin, T-cadherin