Discover the most talked about and latest scientific content & concepts.

Concept: Systems theory


Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, economists have argued that iterated reasoning-what you think I think you think-will suppress complex dynamics by stabilizing or accelerating convergence to Nash equilibrium. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point solution concept. These cycles are driven by a “hopping” behavior that is consistent with other accounts of iterated reasoning: agents are constrained to about two steps of iterated reasoning and learn an additional one-half step with each session. If higher-order reasoning can be complicit in complex emergent dynamics, then cyclic and chaotic patterns may be endogenous features of real-world social and economic systems.

Concepts: Game theory, Psychology, Emergence, Systems theory, Thought, Complex system, Play, Nash equilibrium


Emotions are evolved systems of intra- and interpersonal processes that are regulatory in nature, dealing mostly with issues of personal or social concern. They regulate social interaction and in extension, the social sphere. In turn, processes in the social sphere regulate emotions of individuals and groups. In other words, intrapersonal processes project in the interpersonal space, and inversely, interpersonal experiences deeply influence intrapersonal processes. Thus, I argue that the concepts of emotion generation and regulation should not be artificially separated. Similarly, interpersonal emotions should not be reduced to interacting systems of intraindividual processes. Instead, we can consider emotions at different social levels, ranging from dyads to large scale e-communities. The interaction between these levels is complex and does not only involve influences from one level to the next. In this sense the levels of emotion/regulation are messy and a challenge for empirical study. In this article, I discuss the concepts of emotions and regulation at different intra- and interpersonal levels. I extend the concept of auto-regulation of emotions (Kappas, 2008, 2011a,b) to social processes. Furthermore, I argue for the necessity of including mediated communication, particularly in cyberspace in contemporary models of emotion/regulation. Lastly, I suggest the use of concepts from systems dynamics and complex systems to tackle the challenge of the “messy layers.”

Concepts: Psychology, Sociology, Systems theory, Regulation, Emotion, Abstraction, Complex system, Concepts


The complexity of chess matches has attracted broad interest since its invention. This complexity and the availability of large number of recorded matches make chess an ideal model systems for the study of population-level learning of a complex system. We systematically investigate the move-by-move dynamics of the white player’s advantage from over seventy thousand high level chess matches spanning over 150 years. We find that the average advantage of the white player is positive and that it has been increasing over time. Currently, the average advantage of the white player is [Formula: see text]0.17 pawns but it is exponentially approaching a value of 0.23 pawns with a characteristic time scale of 67 years. We also study the diffusion of the move dependence of the white player’s advantage and find that it is non-Gaussian, has long-ranged anti-correlations and that after an initial period with no diffusion it becomes super-diffusive. We find that the duration of the non-diffusive period, corresponding to the opening stage of a match, is increasing in length and exponentially approaching a value of 15.6 moves with a characteristic time scale of 130 years. We interpret these two trends as a resulting from learning of the features of the game. Additionally, we find that the exponent [Formula: see text] characterizing the super-diffusive regime is increasing toward a value of 1.9, close to the ballistic regime. We suggest that this trend is due to the increased broadening of the range of abilities of chess players participating in major tournaments.

Concepts: Emergence, Complexity, Systems theory, Trend, Complex number, Complex system, Chess, The Advantage


We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of “source” species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the “target” species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.

Concepts: Molecular biology, Mathematics, Systems, Emergence, Complexity, Systems theory, Complex system, Transfer function


Transformative applications in biomedicine require the discovery of complex regulatory networks that explain the development and regeneration of anatomical structures, and reveal what external signals will trigger desired changes of large-scale pattern. Despite recent advances in bioinformatics, extracting mechanistic pathway models from experimental morphological data is a key open challenge that has resisted automation. The fundamental difficulty of manually predicting emergent behavior of even simple networks has limited the models invented by human scientists to pathway diagrams that show necessary subunit interactions but do not reveal the dynamics that are sufficient for complex, self-regulating pattern to emerge. To finally bridge the gap between high-resolution genetic data and the ability to understand and control patterning, it is critical to develop computational tools to efficiently extract regulatory pathways from the resultant experimental shape phenotypes. For example, planarian regeneration has been studied for over a century, but despite increasing insight into the pathways that control its stem cells, no constructive, mechanistic model has yet been found by human scientists that explains more than one or two key features of its remarkable ability to regenerate its correct anatomical pattern after drastic perturbations. We present a method to infer the molecular products, topology, and spatial and temporal non-linear dynamics of regulatory networks recapitulating in silico the rich dataset of morphological phenotypes resulting from genetic, surgical, and pharmacological experiments. We demonstrated our approach by inferring complete regulatory networks explaining the outcomes of the main functional regeneration experiments in the planarian literature; By analyzing all the datasets together, our system inferred the first systems-biology comprehensive dynamical model explaining patterning in planarian regeneration. This method provides an automated, highly generalizable framework for identifying the underlying control mechanisms responsible for the dynamic regulation of growth and form.

Concepts: Scientific method, Mathematics, Emergence, Systems theory, Theory, Logic, Reasoning, Inference


Global warming has increased the frequency of extreme climate events, yet responses of biological and human communities are poorly understood, particularly for aquatic ecosystems and fisheries. Retrospective analysis of known outcomes may provide insights into the nature of adaptations and trajectory of subsequent conditions. We consider the 1815 eruption of the Indonesian volcano Tambora and its impact on Gulf of Maine (GoM) coastal and riparian fisheries in 1816. Applying complex adaptive systems theory with historical methods, we analyzed fish export data and contemporary climate records to disclose human and piscine responses to Tambora’s extreme weather at different spatial and temporal scales while also considering sociopolitical influences. Results identified a tipping point in GoM fisheries induced by concatenating social and biological responses to extreme weather. Abnormal daily temperatures selectively affected targeted fish species-alewives, shad, herring, and mackerel-according to their migration and spawning phenologies and temperature tolerances. First to arrive, alewives suffered the worst. Crop failure and incipient famine intensified fishing pressure, especially in heavily settled regions where dams already compromised watersheds. Insufficient alewife runs led fishers to target mackerel, the next species appearing in abundance along the coast; thus, 1816 became the “mackerel year.” Critically, the shift from riparian to marine fisheries persisted and expanded after temperatures moderated and alewives recovered. We conclude that contingent human adaptations to extraordinary weather permanently altered this complex system. Understanding how adaptive responses to extreme events can trigger unintended consequences may advance long-term planning for resilience in an uncertain future.

Concepts: Weather, Complexity, Systems theory, Complex system, Aquatic ecosystem, Global warming, Extreme weather, Complex adaptive system


The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members' memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals.

Concepts: Psychology, Sociology, Cognition, Memory, Emergence, Self-organization, Systems theory, Social network


Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.

Concepts: Sociology, Systems theory, Social psychology, Social network, Network theory, Network science, Complex network, Social systems


Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a ‘programming language’ and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.

Concepts: DNA, Gene, Molecular biology, Organism, Chemical reaction, Chemistry, Chemical substance, Systems theory


This paper presents a heuristic proof (and simulations of a primordial soup) suggesting that life-or biological self-organization-is an inevitable and emergent property of any (ergodic) random dynamical system that possesses a Markov blanket. This conclusion is based on the following arguments: if the coupling among an ensemble of dynamical systems is mediated by short-range forces, then the states of remote systems must be conditionally independent. These independencies induce a Markov blanket that separates internal and external states in a statistical sense. The existence of a Markov blanket means that internal states will appear to minimize a free energy functional of the states of their Markov blanket. Crucially, this is the same quantity that is optimized in Bayesian inference. Therefore, the internal states (and their blanket) will appear to engage in active Bayesian inference. In other words, they will appear to model-and act on-their world to preserve their functional and structural integrity, leading to homoeostasis and a simple form of autopoiesis.

Concepts: Mathematics, Systems, Systems theory, Dynamical system, Dynamical systems theory, Ergodic theory, Poincaré recurrence theorem, Ergodic hypothesis