Discover the most talked about and latest scientific content & concepts.

Concept: Synthetic fiber


Nanoparticles are very interesting because of their surface properties, different from bulk materials. Such properties make possible to endow ordinary products with new functionalities. Their relatively low cost with respect to other nano-additives make them a promising choice for industrial mass-production systems. Nanoparticles of different kind of materials such as silver, titania, and zinc oxide have been used in the functionalization of fibers and fabrics achieving significantly improved products with new macroscopic properties. This article reviews the most relevant approaches for incorporating such nanoparticles into synthetic fibers used traditionally in the textile industry allowing to give a solution to traditional problems for textiles such as the microorganism growth onto fibers, flammability, robustness against ultraviolet radiation, and many others. In addition, the incorporation of such nanoparticles into special ultrathin fibers is also analyzed. In this field, electrospinning is a very promising technique that allows the fabrication of ultrathin fiber mats with an extraordinary control of their structure and properties, being an ideal alternative for applications such as wound healing or even functional membranes.

Concepts: Ultraviolet, Cotton, Fiber, Titanium dioxide, Zinc oxide, Textile, Synthetic fiber, Aramid


Disperse dyes, which are used for colouring synthetic textile fibres, are well-known contact sensitisers. To investigate the outcome of patch-testing with a textile dye mix (TDM) at 7 dermatology clinics in Sweden, a TDM tested at 2 concentrations was included into the baseline series during one year. The mix consisted of Disperse (D) Blue 35, D Yellow 3, D Orange 1 and 3, D Red 1 and 17, all 1.0%, and D Blue 106 and D Blue 124, each 0.3% in the mix 6.6% and 1.0% each in the mix 8.0%. In 2,122 tested patients, contact allergy to the TDM 8.0% was found in 2.8% and to the TDM 6.6% in 2.5% of the patients. The contact allergy to the TDM could explain or contribute to the dermatitis in about 35% of the patients. Conclusion: contact allergy to the TDM is common and inclusion into the Swedish baseline series should be considered.

Concepts: Hospital, Hypersensitivity, Eczema, Dermatitis, Contact dermatitis, Silk, Synthetic fiber, Aramid


Diffusion Kurtosis Imaging (DKI) is a diffusion-weighted technique which overcomes limitations of the commonly used diffusion tensor imaging approach. This technique models non-Gaussian behaviour of water diffusion by the diffusion kurtosis tensor (KT), which can be used to provide indices of tissue heterogeneity and a better characterisation of the spatial architecture of tissue microstructure. In this study, the geometry of the KT is elucidated using synthetic data generated from multi-compartmental models, where diffusion heterogeneity between intra and extra-cellular media are taken into account, as well as the sensitivity of the results to each model parameter and to synthetic noise. Furthermore, based on the assumption that maxima of the KT are distributed perpendicularly to the direction of well aligned fibres, a novel algorithm for estimating fibre direction directly from the KT is proposed and compared to the fibre directions extracted from DKI based orientation distribution function (ODF) estimates previously proposed in the literature. Synthetic data results showed that, for fibres crossing at high intersection angles, direction estimates extracted directly from the KT have smaller errors than the DKI based ODF estimation approaches (DKI-ODF). Nevertheless, the proposed method showed smaller angular resolution and lower stability to changes of the simulation parameters. On real data, tractography performed on these KT fibre estimates suggests a higher sensitivity than the DKI based ODF in resolving lateral corpus callosum fibres reaching the pre-central cortex when diffusion acquisition is performed with five b-values. Using faster acquisition schemes, KT based tractography did not show improved performance over the DKI-ODF procedures. Nevertheless, it is shown that direct KT fibres estimates are more adequate for computing a generalized version of radial kurtosis maps.

Concepts: Magnetic resonance imaging, Corpus callosum, Fiber, Parameter, Imaging, Tensors, Synthetic fiber, Fibers


Spider silk is extraordinarily strong, mollusk shells and bone are tough, and porcupine quills and feathers resist buckling. How are these notable properties achieved? The building blocks of the materials listed above are primarily minerals and biopolymers, mostly in combination; the first weak in tension and the second weak in compression. The intricate and ingenious hierarchical structures are responsible for the outstanding performance of each material. Toughness is conferred by the presence of controlled interfacial features (friction, hydrogen bonds, chain straightening and stretching); buckling resistance can be achieved by filling a slender column with a lightweight foam. Here, we present and interpret selected examples of these and other biological materials. Structural bio-inspired materials design makes use of the biological structures by inserting synthetic materials and processes that augment the structures' capability while retaining their essential features. In this Review, we explain this idea through some unusual concepts.

Concepts: Oxygen, Structure, Hierarchy, Materials science, Silk, Synthetic fiber, Column, Buckling


The ubiquity of plastic materials in the environment has been, for long, a matter of discussion. Smaller particles, named microplastics (<5mm), gained attention more recently and are now the focus of many studies, especially for their particularities regarding sources, characteristics and effects (e.g., surface-area-to-volume ratio which can increase their potential to transport toxic substances). Fibers from textile materials are a subgroup of microplastics and can be originated from domestic washings, as machine filters and wastewater treatment plants (WWTPs) are not specifically designed to retain them. Once in the environment, fibers can reach concentrations up to thousands of particles per cubic meter, being available to be ingested by a broad range of species. In this scenario, this review adds and details the textile perspective to the microplastics exploring nomenclature, characteristics and factors influencing emission, but also evidencing gaps in knowledge needed to overcome this issue. Preliminarily, general information about marine litter and plastics, followed by specific aspects regarding textile fibers as microplastics, were introduced. Then fiber sources to microplastic pollution were discussed, mainly focusing on domestic washings that pass through WWTPs. Studies that reveal domestic washing as microplastic sources are scarce and there is a considerable lack of standardization in methods as well as incorporation of textile aspects in experimental design. Knowledge gaps include laundry parameters (e.g., water temperature, use of chemicals) and textile articles characteristics (e.g., yarn type, fabric structure) orchestrated by consumers' choice. The lack of information on the coverage and efficiency of sewage treatment systems to remove textile fibers also prevent a global understanding of such sources. The search of alternatives and applicable solutions should come from an integrated, synergic and global perspective, of both environmental and textile area, which still need to be fostered.

Concepts: Water pollution, Sewage treatment, Plastic, Wastewater, Textile, Yarn, Synthetic fiber, Aramid


Washing clothes made from synthetic materials has been identified as a potentially important source of microscopic fibres to the environment. This study examined the release of fibres from polyester, polyester-cotton blend and acrylic fabrics. These fabrics were laundered under various conditions of temperature, detergent and conditioner. Fibres from waste effluent were examined and the mass, abundance and fibre size compared between treatments. Average fibre size ranged between 11.9 and 17.7μm in diameter, and 5.0 and 7.8mm in length. Polyester-cotton fabric consistently shed significantly fewer fibres than either polyester or acrylic. However, fibre release varied according to wash treatment with various complex interactions. We estimate over 700,000 fibres could be released from an average 6kg wash load of acrylic fabric. As fibres have been reported in effluent from sewage treatment plants, our data indicates fibres released by washing of clothing could be an important source of microplastics to aquatic habitats.

Concepts: Sewage treatment, Fiber, Textile, Silk, Synthetic fiber, Aramid, Clothing, Laundry


Sources, pathways and reservoirs of microplastics, plastic particles smaller than 5mm, remain poorly documented in an urban context. While some studies pointed out wastewater treatment plants as a potential pathway of microplastics, none have focused on the atmospheric compartment. In this work, the atmospheric fallout of microplastics was investigated in two different urban and sub-urban sites. Microplastics were collected continuously with a stainless steel funnel. Samples were then filtered and observed with a stereomicroscope. Fibers accounted for almost all the microplastics collected. An atmospheric fallout between 2 and 355particles/m(2)/day was highlighted. Registered fluxes were systematically higher at the urban than at the sub-urban site. Chemical characterization allowed to estimate at 29% the proportion of these fibers being all synthetic (made with petrochemicals), or a mixture of natural and synthetic material. Extrapolation using weight and volume estimates of the collected fibers, allowed a rough estimation showing that between 3 and 10 tons of fibers are deposited by atmospheric fallout at the scale of the Parisian agglomeration every year (2500km(2)). These results could serve the scientific community working on the different sources of microplastic in both continental and marine environments.

Concepts: Environment, Natural environment, Sewage treatment, Plastic, Fiber, Synthetic fiber, Aramid, Fibers


Microscopic plastic (microplastic, 0.1 µm-5 mm) is a widespread pollutant impacting upon aquatic ecosystems across the globe. Environmental sampling has revealed synthetic fibers are prevalent in seawater, sediments and biota. However, microplastic fibers are rarely used in laboratory studies as they are unavailable for purchase and existing preparation techniques have limited application. To facilitate the incorporation of environmentally relevant microplastic fibers into future studies, new methods are required. Here, a novel cryotome protocol has been developed. Nylon, polyethylene terephthalate and polypropylene fibers (10-28 μm diameter) were aligned, embedded in water-soluble freezing agent, and sectioned (40-100 μm length) using a cryogenic microtome. Microplastic fibers were prepared to specified lengths (P < 0.05, ANOVA) and proved consistent in size. Fluorescent labelling of Nylon microfibers with Nile Red facilitated imaging. A 24 h feeding experiment confirmed bioavailability of 10 × 40 μm Nylon fibers to brine shrimp (Artemia sp). This protocol provides a consistent method for preparing standardised fibrous microplastics, with widths similar to those observed in the natural environment, which could ultimately lead to a better understanding of the biological and ecological effects of microplastic debris in the environment.

Concepts: Environment, Ecology, Natural environment, Ecosystem, Fiber, Environmentalism, Synthetic fiber, Aramid


Self-sorted supramolecular nanofibres-a multicomponent system that consists of several types of fibre, each composed of distinct building units-play a crucial role in complex, well-organized systems with sophisticated functions, such as living cells. Designing and controlling self-sorting events in synthetic materials and understanding their structures and dynamics in detail are important elements in developing functional artificial systems. Here, we describe the in situ real-time imaging of self-sorted supramolecular nanofibre hydrogels consisting of a peptide gelator and an amphiphilic phosphate. The use of appropriate fluorescent probes enabled the visualization of self-sorted fibres entangled in two and three dimensions through confocal laser scanning microscopy and super-resolution imaging, with 80 nm resolution. In situ time-lapse imaging showed that the two types of fibre have different formation rates and that their respective physicochemical properties remain intact in the gel. Moreover, we directly visualized stochastic non-synchronous fibre formation and observed a cooperative mechanism.

Concepts: DNA, Protein, Physical chemistry, Fiber, Synthetic fiber, Aramid, Artificial turf, Fibers


A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment.

Concepts: Fiber, Polyester, Textile, Cellulose acetate, Silk, Synthetic fiber, Aramid, Synthetic fibers